噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2014年
4期
128-133
,共6页
蒋爱华%符栋梁%代学昌%周璞%华宏星
蔣愛華%符棟樑%代學昌%週璞%華宏星
장애화%부동량%대학창%주박%화굉성
振动与波%滚动轴承%刚度%无拆卸%光电传感器%离心泵
振動與波%滾動軸承%剛度%無拆卸%光電傳感器%離心泵
진동여파%곤동축승%강도%무탁사%광전전감기%리심빙
vibration and wave%rolling bearing%stiffness%without disassembly%photoelectric sensor%centrifugal pump
轴承刚度对轴系振动有重要影响,研究无拆卸轴承刚度测试方法有利于快速可靠地了解轴系的振动特性。通过机架安装隔振器、泵进出口安装波纹管、电机与泵转子间采用电磁联轴器等结构措施;构建了离心泵转子-滚动轴承的试验台架。以光电传感器安装位置为转轴相位参考,通过转轴振动位移峰值识别出轴承截面轴系等效偏心质量的相位。通过附加质量于等效偏心质量相位产生激振力,并运用Lab VIEW构建的虚拟仪器测量附加质量前、后振动位移峰值变化量,从而得出轴承刚度。最后通过台架实际配置与转子模型进行了验证。结果表明,轴承刚度无拆卸测试方法有效可行,设计的试验台架可实现附加配重的安装,并能够有效地予以验证;所构建的虚拟仪器也能够准确计算得出转轴偏心质量相位与轴承支撑刚度。
軸承剛度對軸繫振動有重要影響,研究無拆卸軸承剛度測試方法有利于快速可靠地瞭解軸繫的振動特性。通過機架安裝隔振器、泵進齣口安裝波紋管、電機與泵轉子間採用電磁聯軸器等結構措施;構建瞭離心泵轉子-滾動軸承的試驗檯架。以光電傳感器安裝位置為轉軸相位參攷,通過轉軸振動位移峰值識彆齣軸承截麵軸繫等效偏心質量的相位。通過附加質量于等效偏心質量相位產生激振力,併運用Lab VIEW構建的虛擬儀器測量附加質量前、後振動位移峰值變化量,從而得齣軸承剛度。最後通過檯架實際配置與轉子模型進行瞭驗證。結果錶明,軸承剛度無拆卸測試方法有效可行,設計的試驗檯架可實現附加配重的安裝,併能夠有效地予以驗證;所構建的虛擬儀器也能夠準確計算得齣轉軸偏心質量相位與軸承支撐剛度。
축승강도대축계진동유중요영향,연구무탁사축승강도측시방법유리우쾌속가고지료해축계적진동특성。통과궤가안장격진기、빙진출구안장파문관、전궤여빙전자간채용전자련축기등결구조시;구건료리심빙전자-곤동축승적시험태가。이광전전감기안장위치위전축상위삼고,통과전축진동위이봉치식별출축승절면축계등효편심질량적상위。통과부가질량우등효편심질량상위산생격진력,병운용Lab VIEW구건적허의의기측량부가질량전、후진동위이봉치변화량,종이득출축승강도。최후통과태가실제배치여전자모형진행료험증。결과표명,축승강도무탁사측시방법유효가행,설계적시험태가가실현부가배중적안장,병능구유효지여이험증;소구건적허의의기야능구준학계산득출전축편심질량상위여축승지탱강도。
Bearing stiffness has significant influence on shaft vibration. Study on the measurement method of bearing stiffness without disassembly is beneficial for obtaining the shaft vibration effectively and reliably. A workbench with a centrifugal pump rotor and rolling bearings is made by installing vibration isolator on brace, mounting corrugated pipe at pump’s inlet and outlet, and electromagnetic coupling between the motor’s shaft and the pump’s shaft. Also, photoelectric sensors are installed as a shaft phase reference, and phase angles of the equivalent eccentric weights on shaft sections near the bearings are identified by the displacement peaks of the shaft vibration. Then, excitation forces are generated by adding masses on the shaft at the phase angles, and variations of the vibration-displacement peaks as well as the bearing stiffness are tested by virtual instrument built by LabVIEW. Finally, the stiffness is validated by actual workbench configuration and the rotor model. The result shows that the bearing stiffness test method without disassembling is feasible, the workbench is reliable to validate the method, and the virtual instrument can also accurately calculate the equivalent eccentric weight’s phase of the shaft and the support stiffness of the bearing.