噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2014年
4期
56-61
,共6页
刘佳%马梦林%张玉梅%肖新标%金学松
劉佳%馬夢林%張玉梅%肖新標%金學鬆
류가%마몽림%장옥매%초신표%금학송
振动与波%阻尼比%温变特性%仿真计算%模态试验
振動與波%阻尼比%溫變特性%倣真計算%模態試驗
진동여파%조니비%온변특성%방진계산%모태시험
vibration and wave%damping ratio%characteristic of thermal damping change%numerical simulation%modal test
低温环境下,高速列车阻尼材料阻尼性能大大降低。为此,通过试验研究高寒列车现有四种阻尼材料温变、频变特性。测试温度包括常温、-10°C和-25°C,分析频率高达850 Hz。通过有限元方法计算无阻尼板件结构的模态频率和振型,并采用力锤敲击系统测试喷涂不同阻尼材料后的四种阻尼复合板件,得到结构模态频率、振型和阻尼比。结合仿真和试验实测振型结果,获得850 Hz内57阶模态阻尼比。对比四种阻尼复合板件结构在三种温度工况下的阻尼比变化规律。结果表明,现车用阻尼材料在常温和中频下具有较好的阻尼效果,随着温度的降低,其阻尼特性变差;而低温阻尼材料在温度达到-10°C时阻尼效果最佳;常温阻尼材料在常温条件下中频部分阻尼性能最好;当低温阻尼材料与常温阻尼材料混合使用时,阻尼性能表现为宽温域,宽频带和高阻尼。低温和常温混合阻尼材料更适合高寒列车在不同季节下的运行条件。相关实测数据为高寒列车阻尼材料选材提供依据;同时,试验方法也为阻尼材料性能测试提供参考。
低溫環境下,高速列車阻尼材料阻尼性能大大降低。為此,通過試驗研究高寒列車現有四種阻尼材料溫變、頻變特性。測試溫度包括常溫、-10°C和-25°C,分析頻率高達850 Hz。通過有限元方法計算無阻尼闆件結構的模態頻率和振型,併採用力錘敲擊繫統測試噴塗不同阻尼材料後的四種阻尼複閤闆件,得到結構模態頻率、振型和阻尼比。結閤倣真和試驗實測振型結果,穫得850 Hz內57階模態阻尼比。對比四種阻尼複閤闆件結構在三種溫度工況下的阻尼比變化規律。結果錶明,現車用阻尼材料在常溫和中頻下具有較好的阻尼效果,隨著溫度的降低,其阻尼特性變差;而低溫阻尼材料在溫度達到-10°C時阻尼效果最佳;常溫阻尼材料在常溫條件下中頻部分阻尼性能最好;噹低溫阻尼材料與常溫阻尼材料混閤使用時,阻尼性能錶現為寬溫域,寬頻帶和高阻尼。低溫和常溫混閤阻尼材料更適閤高寒列車在不同季節下的運行條件。相關實測數據為高寒列車阻尼材料選材提供依據;同時,試驗方法也為阻尼材料性能測試提供參攷。
저온배경하,고속열차조니재료조니성능대대강저。위차,통과시험연구고한열차현유사충조니재료온변、빈변특성。측시온도포괄상온、-10°C화-25°C,분석빈솔고체850 Hz。통과유한원방법계산무조니판건결구적모태빈솔화진형,병채용력추고격계통측시분도불동조니재료후적사충조니복합판건,득도결구모태빈솔、진형화조니비。결합방진화시험실측진형결과,획득850 Hz내57계모태조니비。대비사충조니복합판건결구재삼충온도공황하적조니비변화규률。결과표명,현차용조니재료재상온화중빈하구유교호적조니효과,수착온도적강저,기조니특성변차;이저온조니재료재온도체도-10°C시조니효과최가;상온조니재료재상온조건하중빈부분조니성능최호;당저온조니재료여상온조니재료혼합사용시,조니성능표현위관온역,관빈대화고조니。저온화상온혼합조니재료경괄합고한열차재불동계절하적운행조건。상관실측수거위고한열차조니재료선재제공의거;동시,시험방법야위조니재료성능측시제공삼고。
In low temperature environment the damping material performance of high-speed train will be deteriorated greatly, which will lead to the problem of vibration and noise of the train. In this paper, the change of property of the damping material used in high-speed train is investigated experimentally at the room temperature,-10° C and-25° C environments respectively. In the experiment, four panels with different sprayed damping structures are tested by the hammering method, and their natural frequencies, modals and damping ratios of the 57 orders below 850 Hz frequency are obtained. Then, the corresponding finite element analysis for the four panels without damping is done. And the results are compared with those of the experiments. The results show that the present damping material has good damping performance at the room temperature, but it becomes poor with the temperature dropping. The low-temperature damping material has a best performance at-10° C. The room- temperature damping material has a good performance at the room-temperature in intermediate frequency range. When using the room temperature damping material combined with the low temperature damping material, the panels show a high damping effect in a wide temperature range and a wide frequency band. So the mixture of the low temperature damping material and normal temperature damping material is more suitable to the high-speed trains operating in the area where the temperature changes drastically. The measured data provides a basis for the choice of the damping material for high-speed train, and the test method provides a reference for damping capacity test for damping materials.