山东大学学报(工学版)
山東大學學報(工學版)
산동대학학보(공학판)
JOURNAL OF SHANDONG UNIVERSITY(ENGINEERING SCIENCE)
2014年
4期
3-10,32
,共9页
李春雷%张兆翔%刘洲峰%廖亮%赵全军
李春雷%張兆翔%劉洲峰%廖亮%趙全軍
리춘뢰%장조상%류주봉%료량%조전군
织物疵点%疵点检测%视觉显著性%局部二值模式%纹理差异%分割
織物疵點%疵點檢測%視覺顯著性%跼部二值模式%紋理差異%分割
직물자점%자점검측%시각현저성%국부이치모식%문리차이%분할
fabric defect%defect detection%visual saliency%local binary pattern%textural difference%segment
由于织物图像纹理多样化及疵点类别较多,为了更有效地检测织物疵点,结合织物图像特性及借鉴人类视觉感知机理,提出一种基于纹理差异视觉显著性模型的织物疵点检测算法。该算法首先对图像进行分块,计算各个图像块LBP( local binary pattern)纹理特征,与图像块平均纹理特征的相似度比较,进行显著度计算,从而有效突出了疵点区域。最后利用改进阈值分割算法,实现对疵点区域的定位。通过与已有视觉显著性模型进行比较,得出该算法更能有效地突出疵点区域;同时,分割结果与已有织物疵点检测算法相比发现,该算法具有更强的疵点检测及定位能力。
由于織物圖像紋理多樣化及疵點類彆較多,為瞭更有效地檢測織物疵點,結閤織物圖像特性及藉鑒人類視覺感知機理,提齣一種基于紋理差異視覺顯著性模型的織物疵點檢測算法。該算法首先對圖像進行分塊,計算各箇圖像塊LBP( local binary pattern)紋理特徵,與圖像塊平均紋理特徵的相似度比較,進行顯著度計算,從而有效突齣瞭疵點區域。最後利用改進閾值分割算法,實現對疵點區域的定位。通過與已有視覺顯著性模型進行比較,得齣該算法更能有效地突齣疵點區域;同時,分割結果與已有織物疵點檢測算法相比髮現,該算法具有更彊的疵點檢測及定位能力。
유우직물도상문리다양화급자점유별교다,위료경유효지검측직물자점,결합직물도상특성급차감인류시각감지궤리,제출일충기우문리차이시각현저성모형적직물자점검측산법。해산법수선대도상진행분괴,계산각개도상괴LBP( local binary pattern)문리특정,여도상괴평균문리특정적상사도비교,진행현저도계산,종이유효돌출료자점구역。최후이용개진역치분할산법,실현대자점구역적정위。통과여이유시각현저성모형진행비교,득출해산법경능유효지돌출자점구역;동시,분할결과여이유직물자점검측산법상비발현,해산법구유경강적자점검측급정위능력。
In order to effectively detect defect for fabirc image with variety of defects and complex texture, a novel fab-ric defect detection scheme based on textural difference-based visual saliency model was proposed, which considered the characteristics of fabric image and human visual perception.First, the test image was split into image blocks, and tex-tural feature was extracted using LBP operator for each image block.Second, saliency was calculated by comparing their textural feature with the average texture feature.Finally, the threshold segmentation algorithm was used to localize the defect region.Comparing with the current saliency model, the proposed saliency model could effectively distinguish the defect.In addition, segmentation scheme was superior to the current defect detection algorithm in detection and lo-calization.