煤田地质与勘探
煤田地質與勘探
매전지질여감탐
COAL GEOLOGY & EXPLORATION
2014年
4期
44-49,54
,共7页
朱愿福%王长申%李彦周%潘扎荣%张亚平
硃願福%王長申%李彥週%潘扎榮%張亞平
주원복%왕장신%리언주%반찰영%장아평
矿井涌水量%灰色系统理论%组合模型%综合评价指数
礦井湧水量%灰色繫統理論%組閤模型%綜閤評價指數
광정용수량%회색계통이론%조합모형%종합평개지수
mine water inflow%grey system theory%combination model%comprehensive evaluation index
基于我国东部许多大水矿区煤炭资源日渐枯竭,衰老矿井涌水量变化巨大的现状,以灰色系统理论为基础,提出了一种新的矿井涌水量预测组合模型--GM(1,1)-Markov-新陈代谢组合模型以及用于预测结果综合评价的指数 Z。模型验证结果表明,该组合模型的预测结果优于其他模型,减小了序列数据波动性大、新旧信息更替差异所造成的误差,能够较好地解决时间跨度下采空区残留涌水、意外突水等不确定因素对衰老矿井涌水量预测精度和可靠性的影响。将该组合模型及其他模型应用于开滦集团荆各庄衰老矿井涌水量的预测,结果显示:GM(1,1)-Markov-新陈代谢组合模型的综合评价指数最高,达到0.475;荆各庄矿2011-2015年的矿井涌水量将分别为13.055 m3/min、12.730 m3/min、12.579 m3/min、12.493 m3/min和12.503 m3/min。
基于我國東部許多大水礦區煤炭資源日漸枯竭,衰老礦井湧水量變化巨大的現狀,以灰色繫統理論為基礎,提齣瞭一種新的礦井湧水量預測組閤模型--GM(1,1)-Markov-新陳代謝組閤模型以及用于預測結果綜閤評價的指數 Z。模型驗證結果錶明,該組閤模型的預測結果優于其他模型,減小瞭序列數據波動性大、新舊信息更替差異所造成的誤差,能夠較好地解決時間跨度下採空區殘留湧水、意外突水等不確定因素對衰老礦井湧水量預測精度和可靠性的影響。將該組閤模型及其他模型應用于開灤集糰荊各莊衰老礦井湧水量的預測,結果顯示:GM(1,1)-Markov-新陳代謝組閤模型的綜閤評價指數最高,達到0.475;荊各莊礦2011-2015年的礦井湧水量將分彆為13.055 m3/min、12.730 m3/min、12.579 m3/min、12.493 m3/min和12.503 m3/min。
기우아국동부허다대수광구매탄자원일점고갈,쇠로광정용수량변화거대적현상,이회색계통이론위기출,제출료일충신적광정용수량예측조합모형--GM(1,1)-Markov-신진대사조합모형이급용우예측결과종합평개적지수 Z。모형험증결과표명,해조합모형적예측결과우우기타모형,감소료서렬수거파동성대、신구신식경체차이소조성적오차,능구교호지해결시간과도하채공구잔류용수、의외돌수등불학정인소대쇠로광정용수량예측정도화가고성적영향。장해조합모형급기타모형응용우개란집단형각장쇠로광정용수량적예측,결과현시:GM(1,1)-Markov-신진대사조합모형적종합평개지수최고,체도0.475;형각장광2011-2015년적광정용수량장분별위13.055 m3/min、12.730 m3/min、12.579 m3/min、12.493 m3/min화12.503 m3/min。
Based on the present status that the coal resources of many coal mine districts are becoming exhausted and the immense changes of aging mine water inflow in East China, this paper improves a new model(GM(1,1)- Markov-Information Renewal combination model) for forecasting mine water inflow and a comprehensive evaluation index(Z) for verifying the prediction by combination model. Verification results of models show that the combination model is superior to other models, because it reduces the error caused by the volatility of the serial data and the differences when replacing the old and new information, and can solve the impact of some uncertain factors(such as water-inrush accidentally and residual water burst, etc.) which affect prediction accuracy and dependability of aging coal mine water inflow over a long time span. The combination model and other models are used for forecasting mine water inflow of Jinggezhuang Mine of Kailuan Group, the results show that the comprehensive evaluation index of GM(1,1)-Markov-Information Renewal combination model is the highest(Z=0.475), and the predictive inflow values of mine water inflow in 2011-2015 will be 13.055 m3/min, 12.730 m3/min, 12.579 m3/min, 12.493 m3/min and 12.503 m3/min respectively.