工业仪表与自动化装置
工業儀錶與自動化裝置
공업의표여자동화장치
INDUSTRIAL INSTRUMENTATION & AUTOMATION
2014年
4期
108-112
,共5页
局部放电%超高频%包络信号%小波包变换%奇异值分解%BP神经网络
跼部放電%超高頻%包絡信號%小波包變換%奇異值分解%BP神經網絡
국부방전%초고빈%포락신호%소파포변환%기이치분해%BP신경망락
partial discharge%ultra high frequency%envelope signal%wavelet packet transform%singular value decomposition%BP neural network
为实现GIS故障检测和缺陷的模式识别,针对GIS出现的典型绝缘缺陷及其放电特点,设计了4种常见的GIS绝缘缺陷模型并进行放电试验。对获取的大量超高频包络信号,提出了一种基于小波包变换奇异值分解的时域特征提取方法。该方法首先对包络信号进行小波包变换,构建各尺度的小波包分解系数矩阵,然后对其进行奇异值分解,提取特征向量,在此基础上,采用BP神经网络进行模式识别,结果表明采用此方法获得了良好的识别效果。
為實現GIS故障檢測和缺陷的模式識彆,針對GIS齣現的典型絕緣缺陷及其放電特點,設計瞭4種常見的GIS絕緣缺陷模型併進行放電試驗。對穫取的大量超高頻包絡信號,提齣瞭一種基于小波包變換奇異值分解的時域特徵提取方法。該方法首先對包絡信號進行小波包變換,構建各呎度的小波包分解繫數矩陣,然後對其進行奇異值分解,提取特徵嚮量,在此基礎上,採用BP神經網絡進行模式識彆,結果錶明採用此方法穫得瞭良好的識彆效果。
위실현GIS고장검측화결함적모식식별,침대GIS출현적전형절연결함급기방전특점,설계료4충상견적GIS절연결함모형병진행방전시험。대획취적대량초고빈포락신호,제출료일충기우소파포변환기이치분해적시역특정제취방법。해방법수선대포락신호진행소파포변환,구건각척도적소파포분해계수구진,연후대기진행기이치분해,제취특정향량,재차기출상,채용BP신경망락진행모식식별,결과표명채용차방법획득료량호적식별효과。
In order to achieve the GIS fault detection and defect type recognition, four typical defect models were designed and discharge tests are carried out aiming at insulation defect as well as discharge characteristics in the GIS . With a large number of ultra high frequency envelope signal, a method of do-main feature extraction was proposed based on wavelet packet transform with singular value decomposi-tion. The envelope signal was decomposed through wavelet packet transform first in the method, then the coefficient matrix of wavelet packet transform was built in the scale, after that feature vectors of matrix were extracted by means of singular value decomposition. On this basis, BP neural network was took ad-vantage of for pattern recognition . The results show that the good recognition effect is obtained with that method .