计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
8期
89-93
,共5页
本体推理%AllegroGraph(AG)%Prolog规则%几何%定理证明
本體推理%AllegroGraph(AG)%Prolog規則%幾何%定理證明
본체추리%AllegroGraph(AG)%Prolog규칙%궤하%정리증명
ontology reasoning%AllegroGraph (AG)%Prolog rules%geometry%theorem proving
由于传统的定理机器证明方法是基于规则的,使得定理证明出现几何信息增长迅猛,推理和计算效率低以及过程可读性差等问题。针对以上情况,提出了基于本体和AllegroGraph的几何定理证明方法。该方法通过本体构建几何定理命题模型,然后采用Prolog规则描述语言对几何定理性质进行描述,同时通过分析本体模型和规则描述的对应关系,提出定理规则半自动生成方法。最后以AllegroGraph( AG)图形数据库的推理机制为基础,完成几何定理证明。实验结果表明,将本体和AllegroGraph推理机应用于几何定理证明领域可以摆脱以往几何定理证明代数化问题,几何证明过程容易理解,同时合理地控制了信息的增长,支持定理可持续证明。
由于傳統的定理機器證明方法是基于規則的,使得定理證明齣現幾何信息增長迅猛,推理和計算效率低以及過程可讀性差等問題。針對以上情況,提齣瞭基于本體和AllegroGraph的幾何定理證明方法。該方法通過本體構建幾何定理命題模型,然後採用Prolog規則描述語言對幾何定理性質進行描述,同時通過分析本體模型和規則描述的對應關繫,提齣定理規則半自動生成方法。最後以AllegroGraph( AG)圖形數據庫的推理機製為基礎,完成幾何定理證明。實驗結果錶明,將本體和AllegroGraph推理機應用于幾何定理證明領域可以襬脫以往幾何定理證明代數化問題,幾何證明過程容易理解,同時閤理地控製瞭信息的增長,支持定理可持續證明。
유우전통적정리궤기증명방법시기우규칙적,사득정리증명출현궤하신식증장신맹,추리화계산효솔저이급과정가독성차등문제。침대이상정황,제출료기우본체화AllegroGraph적궤하정리증명방법。해방법통과본체구건궤하정리명제모형,연후채용Prolog규칙묘술어언대궤하정이성질진행묘술,동시통과분석본체모형화규칙묘술적대응관계,제출정리규칙반자동생성방법。최후이AllegroGraph( AG)도형수거고적추리궤제위기출,완성궤하정리증명。실험결과표명,장본체화AllegroGraph추리궤응용우궤하정리증명영역가이파탈이왕궤하정리증명대수화문제,궤하증명과정용역리해,동시합리지공제료신식적증장,지지정리가지속증명。
As traditional theorem mechanical proving methods are based on the rules,making the geometry theorem proving occurs rapid growth,reasoning and calculations inefficient,and process poor readability. For the above cases,a design method of the geometry theorem proving based on ontology and AllegroGraph is presented. This method constructs the model of geometric theorem proposition through ontology,and then uses the Prolog rule description language to describe the nature of geometry theorems. At the same time,through the a-nalysis of the correspondence between ontology model and rules described,propose semi-automatic method for the generation of theorem rules. Finally complete geometric theorem proving based on AllegroGraph ( AG) ,taking the reasoning mechanism of graphic database as the foundation. The experimental results show that the ontology and the AllegroGraph inference engine used in the field of geometry theo-rem proving can get rid of geometry theorem proving algebraic, geometric proof process is easy to understand, reasonably control the growth of information and support sustainable prove theorem.