电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2014年
16期
67-73
,共7页
杨波%陈卫%明浩%陈学有
楊波%陳衛%明浩%陳學有
양파%진위%명호%진학유
电动汽车%充电站%概率负荷%蒙特卡洛模拟%概率统计%粒子群优化
電動汽車%充電站%概率負荷%矇特卡洛模擬%概率統計%粒子群優化
전동기차%충전참%개솔부하%몽특잡락모의%개솔통계%입자군우화
electric vehicle%charging stations%probabilistic load%Monte Carlo simulation%probability statistics%particle swarm optimization
电动汽车充电站负荷的随机性特征,使相关建立具有通用性负荷模型的研究存在一定的困难,针对三类典型电动汽车充电站,即电池更换站、居民区充电站、公共场所充电站,提出了一种以充电方式、地理位置、出行特征为基础的概率负荷建模方法,通过全面研究充电站负荷建模的影响因素,采用蒙特卡洛模拟与概率统计分析规律相结合的方法综合建立三类典型充电站的概率负荷模型。在此基础上,运用粒子群算法优化得到了填谷效应最优的三类典型充电站的优化配置方案,验证了所建立的概率负荷模型的有效性和实用性。
電動汽車充電站負荷的隨機性特徵,使相關建立具有通用性負荷模型的研究存在一定的睏難,針對三類典型電動汽車充電站,即電池更換站、居民區充電站、公共場所充電站,提齣瞭一種以充電方式、地理位置、齣行特徵為基礎的概率負荷建模方法,通過全麵研究充電站負荷建模的影響因素,採用矇特卡洛模擬與概率統計分析規律相結閤的方法綜閤建立三類典型充電站的概率負荷模型。在此基礎上,運用粒子群算法優化得到瞭填穀效應最優的三類典型充電站的優化配置方案,驗證瞭所建立的概率負荷模型的有效性和實用性。
전동기차충전참부하적수궤성특정,사상관건립구유통용성부하모형적연구존재일정적곤난,침대삼류전형전동기차충전참,즉전지경환참、거민구충전참、공공장소충전참,제출료일충이충전방식、지리위치、출행특정위기출적개솔부하건모방법,통과전면연구충전참부하건모적영향인소,채용몽특잡락모의여개솔통계분석규률상결합적방법종합건립삼류전형충전참적개솔부하모형。재차기출상,운용입자군산법우화득도료전곡효응최우적삼류전형충전참적우화배치방안,험증료소건립적개솔부하모형적유효성화실용성。
The load of electric vehicle(EV) charging stations has some stochastic features that make the study on the general load model difficult.In connection with three EV charging stations including battery swap stations,residential quarters charging stations and public charging stations,a probabilistic load modeling method is proposed based on charging modes, locations and trip characteristics.The probabilistic load models of three kinds of EV charging stations are obtained using Monte Carlo simulation and probability statistics analysis,by analyzing some vital factors of charging station load modeling in general. Moreover,optimized configuration schemes of three typical charging stations with best valley effect are obtained by using particle swarm algorithm optimization,and the validity and practicability of the proposed probabilistic load model are verified. This work is supported by National High Technology Research and Development Program of China (863 Program) (No.201 1AA05A109) and National Natural Science Foundation of China(No.5 1277085).