科技创新导报
科技創新導報
과기창신도보
SCIENCE AND TECHNOLOGY CONSULTING HERALD
2014年
18期
29-30
,共2页
多信息源%阈值%遥感影像%分类%精度
多信息源%閾值%遙感影像%分類%精度
다신식원%역치%요감영상%분류%정도
multi-source of information%threshold%remote sensing image%classification%accuracy
该文基于ERDAS的KnowledgeEngineer分类方法原理,提出一种多信息源、智能化、程序化的阈值分类技术,利用空间模型语言SML(SpatialModelerLanguage)编程实现遥感影像的分类,进而克服了传统分类方法只能针对单一信息源的局限。研究工作以1999年ETM+遥感影像临港新城为例,将该方法与传统的监督分类方法进行比较和精度评价。结果表明,阈值分类法比监督分类法分类精度高,指标Kappa系数由0.6109提高到0.8204。该方法可通过模块实现多信息源的调用,从已分类图像中提取确认的分类信息,达到一定的智能化,减少人为的重复性操作。
該文基于ERDAS的KnowledgeEngineer分類方法原理,提齣一種多信息源、智能化、程序化的閾值分類技術,利用空間模型語言SML(SpatialModelerLanguage)編程實現遙感影像的分類,進而剋服瞭傳統分類方法隻能針對單一信息源的跼限。研究工作以1999年ETM+遙感影像臨港新城為例,將該方法與傳統的鑑督分類方法進行比較和精度評價。結果錶明,閾值分類法比鑑督分類法分類精度高,指標Kappa繫數由0.6109提高到0.8204。該方法可通過模塊實現多信息源的調用,從已分類圖像中提取確認的分類信息,達到一定的智能化,減少人為的重複性操作。
해문기우ERDAS적KnowledgeEngineer분류방법원리,제출일충다신식원、지능화、정서화적역치분류기술,이용공간모형어언SML(SpatialModelerLanguage)편정실현요감영상적분류,진이극복료전통분류방법지능침대단일신식원적국한。연구공작이1999년ETM+요감영상림항신성위례,장해방법여전통적감독분류방법진행비교화정도평개。결과표명,역치분류법비감독분류법분류정도고,지표Kappa계수유0.6109제고도0.8204。해방법가통과모괴실현다신식원적조용,종이분류도상중제취학인적분류신식,체도일정적지능화,감소인위적중복성조작。
Based on the principle of Knowledge Engineer in ERDAS, a multi-source of information, intelligence,and programmed threshold classification is proposed in this thesis. The Spatial Language program is applied to conduct the classification of remote sensing image,and then,to overcome the single source limitation of the traditional classification methods.Using the Lingang New City ETM+ RS image acquired in 1999 as the training example,comparing this method with the supervised classification, we evaluate the accuracy of classification by the Kappa index.The final result shows that the Kappa value is improved from 0.6109 to 0.8204. Applying this program,we can collect and gather information from multiple sources, and then extract identified patches,realize intelligent classifying procedure as well as reduce laboriously repetitive operations thoroughly.