中国惯性技术学报
中國慣性技術學報
중국관성기술학보
JOURNAL OF CHINESE INERTIAL TECHNOLOGY
2014年
4期
459-462,556
,共5页
凝固惯性系快速对准%前置平滑滤波%层叠采样%多重积分
凝固慣性繫快速對準%前置平滑濾波%層疊採樣%多重積分
응고관성계쾌속대준%전치평활려파%층첩채양%다중적분
inertial fixed frame fast alignment%smooth pre-filtering%interleaved sampling%multiple integral
惯性导航系统在开始工作时需要进行初始对准从而确定初始姿态。提出了一种与经典的对准算法如陀螺罗经或卡尔曼滤波技术不同的凝固惯性系快速(IF3)对准算法。可在任意初始误差条件下进行对准,且能适应高频扰动环境。将姿态矩阵分解成地球自转、惯性速率和对准矩阵三个部分。对准矩阵依靠两组分别处于不同惯性系里的观测向量确定。通过采用前置平滑滤波、层叠采样和二重积分技术,对准精度显著改善。在载车发动机怠速运行和人员上下车扰动条件下,60 s对准误差优于1 mil (1?),180 s对准误差优于0.6 mil(1?),300 s对准误差优于0.4 mil(1?)。实验结果证明了IF3对准算法的快速性、准确性和鲁棒性。
慣性導航繫統在開始工作時需要進行初始對準從而確定初始姿態。提齣瞭一種與經典的對準算法如陀螺囉經或卡爾曼濾波技術不同的凝固慣性繫快速(IF3)對準算法。可在任意初始誤差條件下進行對準,且能適應高頻擾動環境。將姿態矩陣分解成地毬自轉、慣性速率和對準矩陣三箇部分。對準矩陣依靠兩組分彆處于不同慣性繫裏的觀測嚮量確定。通過採用前置平滑濾波、層疊採樣和二重積分技術,對準精度顯著改善。在載車髮動機怠速運行和人員上下車擾動條件下,60 s對準誤差優于1 mil (1?),180 s對準誤差優于0.6 mil(1?),300 s對準誤差優于0.4 mil(1?)。實驗結果證明瞭IF3對準算法的快速性、準確性和魯棒性。
관성도항계통재개시공작시수요진행초시대준종이학정초시자태。제출료일충여경전적대준산법여타라라경혹잡이만려파기술불동적응고관성계쾌속(IF3)대준산법。가재임의초시오차조건하진행대준,차능괄응고빈우동배경。장자태구진분해성지구자전、관성속솔화대준구진삼개부분。대준구진의고량조분별처우불동관성계리적관측향량학정。통과채용전치평활려파、층첩채양화이중적분기술,대준정도현저개선。재재차발동궤태속운행화인원상하차우동조건하,60 s대준오차우우1 mil (1?),180 s대준오차우우0.6 mil(1?),300 s대준오차우우0.4 mil(1?)。실험결과증명료IF3대준산법적쾌속성、준학성화로봉성。
An initial alignment is needed to determine the initial attitude when inertial navigation system(INS) start to work. In this paper, an inertial fixed frame fast(IF3) alignment algorithm is devised, in contrast to the classic alignment algorithms, such as gyrocompassing and Kalman filtering techniques. Unlike classic techniques, the IF3 alignment is effective with any initial attitude error, as well as high frequency vibrations. The estimator is based on decomposing the attitude matrix into separate earth motion, inertial rate, and alignment matrix. And the alignment matrix is determined by two sets of observation vectors in different inertial fixed frames. By smooth pre-filtering, interleaved sampling and double integrating the observation vectors, it is shown that the precision of attitude estimates is improved. The IF3 alignment heading error is less than 1 mil(1?) within 60 s, 0.6 mil(1?) within 180 s, and 0.4 mil(1?) within 300 s under the condition that the vehicle engine is running at idle and intended introducing the perturbation caused by a person’s getting on and off the vehicle. Experiment tests favorably demonstrate its rapidness, accuracy and robustness.