同位素
同位素
동위소
ISOTOPES
2014年
3期
140-146
,共7页
多组分%算法%收敛%稳定同位素
多組分%算法%收斂%穩定同位素
다조분%산법%수렴%은정동위소
multicomponent%calculation method%convergence%stable isotope
本文提出一种计算多组分矩形级联的数值计算方法,该算法以迭代序列差迭代为基础,通过各级物料混合达到收敛。数值计算表明,该方法与其他算法的结果吻合性好,具有很好的收敛性,且其最终收敛精度不依赖初始丰度,不受级联长度的影响,与基本全分离系数大小无关。此方法可以推广到带附加流、阶梯型或多层级联等更复杂的级联计算。
本文提齣一種計算多組分矩形級聯的數值計算方法,該算法以迭代序列差迭代為基礎,通過各級物料混閤達到收斂。數值計算錶明,該方法與其他算法的結果吻閤性好,具有很好的收斂性,且其最終收斂精度不依賴初始豐度,不受級聯長度的影響,與基本全分離繫數大小無關。此方法可以推廣到帶附加流、階梯型或多層級聯等更複雜的級聯計算。
본문제출일충계산다조분구형급련적수치계산방법,해산법이질대서렬차질대위기출,통과각급물료혼합체도수렴。수치계산표명,해방법여기타산법적결과문합성호,구유흔호적수렴성,차기최종수렴정도불의뢰초시봉도,불수급련장도적영향,여기본전분리계수대소무관。차방법가이추엄도대부가류、계제형혹다층급련등경복잡적급련계산。
The calculation method for multicomponent square cascades was proposed .The method was based on the difference in the iteration sequence and iteration approach ,and the mixing scheme of materials at stages was used as a constraint condition of the convergence . Numerical calculations indicate that the results obtained by the method and other methods were consistent .The method was very stable ,and its convergence accuracy was independ-ent of the initial iteration abundance ,the cascade length and the overall separation factor . In addition ,the method can be generalized to calculating complex cascades such as square cascade with additional flows ,square-off cascade and multi-layer cascade .