武汉理工大学学报(交通科学与工程版)
武漢理工大學學報(交通科學與工程版)
무한리공대학학보(교통과학여공정판)
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY(TRANSPORTATION SCIENCE & ENGINEERING)
2014年
4期
850-854
,共5页
交通分配%非合作博弈%Nash均衡%系统最优%用户均衡
交通分配%非閤作博弈%Nash均衡%繫統最優%用戶均衡
교통분배%비합작박혁%Nash균형%계통최우%용호균형
traffic assignment%non-corporative game%Nash equilibrium%system optimism%user equilibrium
为了更好地解释系统最优与用户均衡两种交通分配方法间的定量关系,透过博弈论的视角,通过对算例的非合作博弈分析,从无限策略集下纯策略Nash均衡的角度指出了系统最优与用户均衡的统一性,二者作为Nash均衡的两种特殊状态,可以随博弈局中人数的变化而相互转化。同时,还对系统最优与用户均衡的转化过程进行分析,阐述其两阶段特征及对实际分配状态的影响,并通过在多场景中调整路阻函数的各项参数,指出路径的自由流走行时间作为“初期优势”,对转化速度和方向具有关键性影响。
為瞭更好地解釋繫統最優與用戶均衡兩種交通分配方法間的定量關繫,透過博弈論的視角,通過對算例的非閤作博弈分析,從無限策略集下純策略Nash均衡的角度指齣瞭繫統最優與用戶均衡的統一性,二者作為Nash均衡的兩種特殊狀態,可以隨博弈跼中人數的變化而相互轉化。同時,還對繫統最優與用戶均衡的轉化過程進行分析,闡述其兩階段特徵及對實際分配狀態的影響,併通過在多場景中調整路阻函數的各項參數,指齣路徑的自由流走行時間作為“初期優勢”,對轉化速度和方嚮具有關鍵性影響。
위료경호지해석계통최우여용호균형량충교통분배방법간적정량관계,투과박혁론적시각,통과대산례적비합작박혁분석,종무한책략집하순책략Nash균형적각도지출료계통최우여용호균형적통일성,이자작위Nash균형적량충특수상태,가이수박혁국중인수적변화이상호전화。동시,환대계통최우여용호균형적전화과정진행분석,천술기량계단특정급대실제분배상태적영향,병통과재다장경중조정로조함수적각항삼수,지출로경적자유류주행시간작위“초기우세”,대전화속도화방향구유관건성영향。
In purpose of going deep into the quantitative relation between system optimism and user e-quilibrium ,which are two classical methods of traffic assignment ,the perspective of game theory is a-dopted .Through non-corporative game analysis to the example ,it is showed that system optimism and user equilibrium can be integrated to pure strategy Nash equilibrium under infinite strategy sets . Exiting as two particular situations of Nash equilibrium ,they can transform to each other with change of the number of game players .Furthermore ,the transformation process between system optimism and user equilibrium is analyzed ,which is characterized by two different stages .The impact that pa-rameters in impedance functions exert on process is also researched ,and it is argued that the free flow travel time ,w hich reflects the original advantage of the route ,has great influence on transformation speed and tendency .