石油与天然气地质
石油與天然氣地質
석유여천연기지질
OIL & GAS GEOLOGY
2014年
4期
562-569
,共8页
赵立强%刘飞%王佩珊%刘平礼%罗志锋%李年银
趙立彊%劉飛%王珮珊%劉平禮%囉誌鋒%李年銀
조립강%류비%왕패산%류평례%라지봉%리년은
延伸规律%相交作用准则%渗流-应力-裂缝延伸耦合%扩展有限单元法%网络裂缝%天然裂缝
延伸規律%相交作用準則%滲流-應力-裂縫延伸耦閤%擴展有限單元法%網絡裂縫%天然裂縫
연신규률%상교작용준칙%삼류-응력-렬봉연신우합%확전유한단원법%망락렬봉%천연렬봉
propagation pattern%intersection criterion%coupled seepage-stress-fracture propagation%extended finite ele-ment method%network fracture%natural fracture
随着天然裂缝性储层、煤层气、页岩气、致密砂岩气、致密油和复杂岩性低渗透油气藏勘探开发进程的加快,大规模体积压裂实践及微地震裂缝实时监测技术对水力裂缝延伸模拟提出了巨大挑战。复杂网络裂缝延伸受储层岩性、岩石力学性质、地质力学和天然裂缝特征等影响,文中综述了天然裂缝对水力诱导裂缝延伸影响的国内外研究进展。水力诱导裂缝与天然裂缝相交前、相交时和相交后的复杂力学行为决定了水力诱导裂缝的复杂延伸规律:水力裂缝尖端逼近时,诱导应力场会导致胶结天然裂缝张性或剪性脱粘;相交时,天然裂缝可能出现剪切破裂导致压裂液大量滤失、或水力裂缝穿过天然裂缝沿原方向延伸、或转向沿天然裂缝延伸并在其端部或弱结构点起裂;相交后,可能出现多个裂缝尖端同时延伸的情况,形成复杂网络裂缝。真三轴压裂测试系统结合工业CT扫描、声发射装置、X-衍射等是研究复杂网络裂缝形成机理的主要试验手段;而非常规裂缝模型和扩展有限元方法(XFEM)是模拟复杂网络裂缝延伸的主要数值手段。 XFEM是处理含裂纹等不连续问题的最有效方法,并具有有限元方法的所有优点,考虑到裂缝内流体压力是水力裂缝延伸的驱动力,故基于XFEM的渗流-应力-裂缝延伸全耦合研究是未来体积压裂复杂网络裂缝延伸模拟的重要发展方向。
隨著天然裂縫性儲層、煤層氣、頁巖氣、緻密砂巖氣、緻密油和複雜巖性低滲透油氣藏勘探開髮進程的加快,大規模體積壓裂實踐及微地震裂縫實時鑑測技術對水力裂縫延伸模擬提齣瞭巨大挑戰。複雜網絡裂縫延伸受儲層巖性、巖石力學性質、地質力學和天然裂縫特徵等影響,文中綜述瞭天然裂縫對水力誘導裂縫延伸影響的國內外研究進展。水力誘導裂縫與天然裂縫相交前、相交時和相交後的複雜力學行為決定瞭水力誘導裂縫的複雜延伸規律:水力裂縫尖耑逼近時,誘導應力場會導緻膠結天然裂縫張性或剪性脫粘;相交時,天然裂縫可能齣現剪切破裂導緻壓裂液大量濾失、或水力裂縫穿過天然裂縫沿原方嚮延伸、或轉嚮沿天然裂縫延伸併在其耑部或弱結構點起裂;相交後,可能齣現多箇裂縫尖耑同時延伸的情況,形成複雜網絡裂縫。真三軸壓裂測試繫統結閤工業CT掃描、聲髮射裝置、X-衍射等是研究複雜網絡裂縫形成機理的主要試驗手段;而非常規裂縫模型和擴展有限元方法(XFEM)是模擬複雜網絡裂縫延伸的主要數值手段。 XFEM是處理含裂紋等不連續問題的最有效方法,併具有有限元方法的所有優點,攷慮到裂縫內流體壓力是水力裂縫延伸的驅動力,故基于XFEM的滲流-應力-裂縫延伸全耦閤研究是未來體積壓裂複雜網絡裂縫延伸模擬的重要髮展方嚮。
수착천연렬봉성저층、매층기、혈암기、치밀사암기、치밀유화복잡암성저삼투유기장감탐개발진정적가쾌,대규모체적압렬실천급미지진렬봉실시감측기술대수력렬봉연신모의제출료거대도전。복잡망락렬봉연신수저층암성、암석역학성질、지질역학화천연렬봉특정등영향,문중종술료천연렬봉대수력유도렬봉연신영향적국내외연구진전。수력유도렬봉여천연렬봉상교전、상교시화상교후적복잡역학행위결정료수력유도렬봉적복잡연신규률:수력렬봉첨단핍근시,유도응력장회도치효결천연렬봉장성혹전성탈점;상교시,천연렬봉가능출현전절파렬도치압렬액대량려실、혹수력렬봉천과천연렬봉연원방향연신、혹전향연천연렬봉연신병재기단부혹약결구점기렬;상교후,가능출현다개렬봉첨단동시연신적정황,형성복잡망락렬봉。진삼축압렬측시계통결합공업CT소묘、성발사장치、X-연사등시연구복잡망락렬봉형성궤리적주요시험수단;이비상규렬봉모형화확전유한원방법(XFEM)시모의복잡망락렬봉연신적주요수치수단。 XFEM시처리함렬문등불련속문제적최유효방법,병구유유한원방법적소유우점,고필도렬봉내류체압력시수력렬봉연신적구동력,고기우XFEM적삼류-응력-렬봉연신전우합연구시미래체적압렬복잡망락렬봉연신모의적중요발전방향。
With the accelerated process of the exploration and exploitation of natural fractured reservoir , coal bed me-thane,shale gas,tight gas,tight oil and complex lithology reservoir with low and/or ultra-low permeability,simulation of hydraulic fracture propagation is faced with big challenges from volume fracturing and real -time microseismic monitoring of hydraulic fracture .The propagation behaviors of complex fracture network are affected by reservoir lithology ,geome-chanics and natural fracture characteristics ,etc .Research on the influences of natural fractures on the propagation of hy-draulic fractures both at home and abroad was reviewed in this paper .The mechanical behaviors before ,during and after the intersection of hydraulic fracture with pre-existing natural fracture determine the propagation of hydraulic fractures and the creation of fracture network .Before their intersection ,tensile or shear debonding of cemented pre-existing natural fractures may start when induced fractures tip approaching .During their intersection , the natural fractures might be sheared to cause abundant fracturing fluid filtration , while the hydraulic fractures might penetrate natural fractures and propagate along the original path ,or be arrested to propagate along the direction of natural fractures and re-initiate at its terminal or weak structure point .After their intersection ,a complex fracture network may be formed with the simultaneous propagation of multiple fracture tips .True triaxial fracturing test system , combined with industrial computed tomography (CT)scan,acoustic emission device and X-ray diffraction,is the principal laboratorial means of studying the generation mechanism of complicated fracture network , while unconventional fracture model and extended finite element method ( XFEM) are the main numerical methods for simulation of complex fracture network .XFEM is the most effective approach to deal with discontinuous analysis especially crack propagation problem ,and has all the advantages of the finite element methods.As fracture fluid pressure is the driving force for hydraulic fracture propagation , XFEM-based seepage flow-stress-fracture propagation coupling is the future trend of complex fracture network propagation simulation .