电测与仪表
電測與儀錶
전측여의표
ELECTRICAL MEASUREMENT & INSTRUMENTATION
2014年
15期
64-67
,共4页
曲凤成%张秀平%邱敏%曹福全
麯鳳成%張秀平%邱敏%曹福全
곡봉성%장수평%구민%조복전
多变量重构%最小二乘支持向量回归机%油中溶解气体分析
多變量重構%最小二乘支持嚮量迴歸機%油中溶解氣體分析
다변량중구%최소이승지지향량회귀궤%유중용해기체분석
multivariate reconstruction%least squares support vector regression%analysis of dissolved gas in oil
通过对变压器油中溶解气体进行预测,可以及早发现变压器故障。提出将多变量时间序列重建的状态变量作为 LS -SVR 模型输入,建立变压器故障的预测模型。首先,给出基于多元重构的预测原理和 LS -SVR 理论。然后,讨论重构参数和 LS -SVR 参数对于预测误差的影响,通过合理选择参数确保预测的精度。最后,将该方法用于变压器故障诊断实例以验证多元重构和支持向量机预测的适用性,通过与多种预测方法进行比较,基于 LS -SVR 原理的变压器故障组合预测模型的预测精度明显优于单一预测模型和其它的组合预测模型。
通過對變壓器油中溶解氣體進行預測,可以及早髮現變壓器故障。提齣將多變量時間序列重建的狀態變量作為 LS -SVR 模型輸入,建立變壓器故障的預測模型。首先,給齣基于多元重構的預測原理和 LS -SVR 理論。然後,討論重構參數和 LS -SVR 參數對于預測誤差的影響,通過閤理選擇參數確保預測的精度。最後,將該方法用于變壓器故障診斷實例以驗證多元重構和支持嚮量機預測的適用性,通過與多種預測方法進行比較,基于 LS -SVR 原理的變壓器故障組閤預測模型的預測精度明顯優于單一預測模型和其它的組閤預測模型。
통과대변압기유중용해기체진행예측,가이급조발현변압기고장。제출장다변량시간서렬중건적상태변량작위 LS -SVR 모형수입,건립변압기고장적예측모형。수선,급출기우다원중구적예측원리화 LS -SVR 이론。연후,토론중구삼수화 LS -SVR 삼수대우예측오차적영향,통과합리선택삼수학보예측적정도。최후,장해방법용우변압기고장진단실례이험증다원중구화지지향량궤예측적괄용성,통과여다충예측방법진행비교,기우 LS -SVR 원리적변압기고장조합예측모형적예측정도명현우우단일예측모형화기타적조합예측모형。
Transformer faults can be found through prediction of the dissolved gas in the transformer oil .With the state variables in the multivariate time series reconstruction as the inputs of the LS -SVR model, a transformer fault predic-tion model was proposed.Firstly, the prediction principle based on multiple reconstruction and LS -SVR theory were introduced.Then, the effects of the reconstruction parameters and LS -SVR parameters on predicting errors were dis -cussed.The parameters were reasonably chosen to ensure prediction accuracy .Finally, the proposed method was used in the actual transformer fault diagnosis in order to verify the applicability of multiple reconstruction and support vector machine prediction.Compared with other predicting approaches , the proposed transformer fault combination predicting model based on the LS -SVR theory has higher prediction accuracy than any single predicting model or any other combination predicting model.