计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
17期
142-145,190
,共5页
粗糙模糊K-均值聚类%模糊粗糙K-均值聚类%支持向量机
粗糙模糊K-均值聚類%模糊粗糙K-均值聚類%支持嚮量機
조조모호K-균치취류%모호조조K-균치취류%지지향량궤
rough fuzzy K-mean clustering%fuzzy rough K-mean clustering%support vector machine
在分析归纳原有聚类方法不足的基础上,结合粗糙理论和模糊理论,给出了改进的粗糙模糊K-均值聚类算法;设计了新的模糊粗糙K-均值聚类算法,并验证了该聚类算法的有效性;进而将这两种聚类算法应用到支持向量机中,对训练样本做预处理,以减少样本数目,提高了其训练速度和分类精度。
在分析歸納原有聚類方法不足的基礎上,結閤粗糙理論和模糊理論,給齣瞭改進的粗糙模糊K-均值聚類算法;設計瞭新的模糊粗糙K-均值聚類算法,併驗證瞭該聚類算法的有效性;進而將這兩種聚類算法應用到支持嚮量機中,對訓練樣本做預處理,以減少樣本數目,提高瞭其訓練速度和分類精度。
재분석귀납원유취류방법불족적기출상,결합조조이론화모호이론,급출료개진적조조모호K-균치취류산법;설계료신적모호조조K-균치취류산법,병험증료해취류산법적유효성;진이장저량충취류산법응용도지지향량궤중,대훈련양본주예처리,이감소양본수목,제고료기훈련속도화분류정도。
The shortcomings of the original clustering methods are analyzed. Moreover, the rough theory and fuzzy theory are combined together. The improvement of rough fuzzy K-means clustering algorithm is given. A fuzzy rough K-means clustering algorithm is designed, and the validity of fuzzy rough K-means clustering algorithm is verified. The proposed clustering algorithms are applied to support vector machine. In the above applications, the training samples are pre-processed to reduce the number of samples and improve the training speed and the classification accuracy.