江苏科技大学学报(自然科学版)
江囌科技大學學報(自然科學版)
강소과기대학학보(자연과학판)
JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
3期
303-306
,共4页
p-Laplacian 算子%周期解%马拉舍维奇 - 马文连续定理
p-Laplacian 算子%週期解%馬拉捨維奇 - 馬文連續定理
p-Laplacian 산자%주기해%마랍사유기 - 마문련속정리
p-Laplacian operator%perodic solution%Manasevich-Mawhin continuation theorem
利用 Manásevich-Mawhin 连续定理研究一类二阶 p-Laplacian 方程(p(x'))'= f(t,x,x')- e(t)周期解的存在与唯一性,在非线性项 f = g + h 分别满足一定增长性的条件下,得到了一个新的周期解存在唯一性定理。
利用 Manásevich-Mawhin 連續定理研究一類二階 p-Laplacian 方程(p(x'))'= f(t,x,x')- e(t)週期解的存在與唯一性,在非線性項 f = g + h 分彆滿足一定增長性的條件下,得到瞭一箇新的週期解存在唯一性定理。
이용 Manásevich-Mawhin 련속정리연구일류이계 p-Laplacian 방정(p(x'))'= f(t,x,x')- e(t)주기해적존재여유일성,재비선성항 f = g + h 분별만족일정증장성적조건하,득도료일개신적주기해존재유일성정리。
By using Manásevich-Mawhin continuation theorem,the existence and uniqueness of a class of sec-ond-order p-Laplacian equations(p(x'))' = f(t,x,x')- e(t)are studied. Under the assumptions of nonlinear term f = g + h,where g and h satisfy some increasing conditions,sufficient conditions for the existence and u-niqueness of periodic solutions for the equations are obtained.