江苏科技大学学报(自然科学版)
江囌科技大學學報(自然科學版)
강소과기대학학보(자연과학판)
JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
3期
271-276
,共6页
孙玲芳%许锋%周家波%侯志鲁
孫玲芳%許鋒%週傢波%侯誌魯
손령방%허봉%주가파%후지로
粗糙集%属性约简%属性分类能力%遗传算法%变异方式
粗糙集%屬性約簡%屬性分類能力%遺傳算法%變異方式
조조집%속성약간%속성분류능력%유전산법%변이방식
rough set%attribute reduction%attribute classification ability%genetic algorithm%mutation methods
传统的属性约简算法效率低下,容易陷入局部极小值,不适用于大型知识库。文中提出一种基于粗糙集理论的遗传属性约简方法,在传统的属性约简方法基础上对适应度函数、交叉和变异的概率、变异方式和种群修复方式进行了改进。在正域区分对象集的研究基础上,用启发信息设计了一种快速的属性约简算法,并利用 Matlab 工具进行仿真,将仿真结果与前人研究结果作对比。实验表明此算法优于前人的算法,能够快速高效地对大型知识系统求其约简。
傳統的屬性約簡算法效率低下,容易陷入跼部極小值,不適用于大型知識庫。文中提齣一種基于粗糙集理論的遺傳屬性約簡方法,在傳統的屬性約簡方法基礎上對適應度函數、交扠和變異的概率、變異方式和種群脩複方式進行瞭改進。在正域區分對象集的研究基礎上,用啟髮信息設計瞭一種快速的屬性約簡算法,併利用 Matlab 工具進行倣真,將倣真結果與前人研究結果作對比。實驗錶明此算法優于前人的算法,能夠快速高效地對大型知識繫統求其約簡。
전통적속성약간산법효솔저하,용역함입국부겁소치,불괄용우대형지식고。문중제출일충기우조조집이론적유전속성약간방법,재전통적속성약간방법기출상대괄응도함수、교차화변이적개솔、변이방식화충군수복방식진행료개진。재정역구분대상집적연구기출상,용계발신식설계료일충쾌속적속성약간산법,병이용 Matlab 공구진행방진,장방진결과여전인연구결과작대비。실험표명차산법우우전인적산법,능구쾌속고효지대대형지식계통구기약간。
Traditional attribute reduction algorithm efficiency is low. It is easy to fall into local minimum value and shall not be applied to the large decision table. This paper proposes a genetic attribute reduction method based on rough set theory. Compared with traditional attribute reduction methods,it improves the fitness function the crossover probability,the mutation probability and the mutation methods. It takes advantage of heuristic in-formation in design a new efficient genetic algorithm of attribute reduction based on rough set. It makes use of Matlab tools to the simulation and compares the simulation results with predecessors' research results. The emu-late example and experiment results show that the algorithm could compute the attribute reduction of the decision table quickly and efficiently,especially in tackling a large decision table.