江苏科技大学学报(自然科学版)
江囌科技大學學報(自然科學版)
강소과기대학학보(자연과학판)
JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
3期
216-219,224
,共5页
吞吐量%预测%灰色模型%灰色神经网络
吞吐量%預測%灰色模型%灰色神經網絡
탄토량%예측%회색모형%회색신경망락
throughput%prediction%grey model%grey neural network
为了降低港口集装箱吞吐量的预测误差,提高预测精度,文章通过分析传统的灰色预测模型和 BP 神经网络预测模型的优缺点,构建了灰色神经网络港口集装箱吞吐量预测模型,该模型充分发挥了灰色模型所需初始数据少和 BP 神经网络非线性拟合能力强的特点。以实际数值作为初始数据,各种灰色模型的预测值为神经网络的输入值,神经网络的输出值为组合预测结果。通过实例分析,结果表明:灰色神经网络预测模型提高了预测精度,预测结果比较理想,优于单一预测模型,因此,该模型用于港口集装箱吞吐量预测是可行的、有效的。
為瞭降低港口集裝箱吞吐量的預測誤差,提高預測精度,文章通過分析傳統的灰色預測模型和 BP 神經網絡預測模型的優缺點,構建瞭灰色神經網絡港口集裝箱吞吐量預測模型,該模型充分髮揮瞭灰色模型所需初始數據少和 BP 神經網絡非線性擬閤能力彊的特點。以實際數值作為初始數據,各種灰色模型的預測值為神經網絡的輸入值,神經網絡的輸齣值為組閤預測結果。通過實例分析,結果錶明:灰色神經網絡預測模型提高瞭預測精度,預測結果比較理想,優于單一預測模型,因此,該模型用于港口集裝箱吞吐量預測是可行的、有效的。
위료강저항구집장상탄토량적예측오차,제고예측정도,문장통과분석전통적회색예측모형화 BP 신경망락예측모형적우결점,구건료회색신경망락항구집장상탄토량예측모형,해모형충분발휘료회색모형소수초시수거소화 BP 신경망락비선성의합능력강적특점。이실제수치작위초시수거,각충회색모형적예측치위신경망락적수입치,신경망락적수출치위조합예측결과。통과실례분석,결과표명:회색신경망락예측모형제고료예측정도,예측결과비교이상,우우단일예측모형,인차,해모형용우항구집장상탄토량예측시가행적、유효적。
In order to reduce prediction error of port container throughput and improve its prediction accuracy, the grey neural network model of port container throughput is constructed after the advantages and disadvantages of the conventional grey model and BP neural network model have been analyzed. The new model gives full play to the characters of low data demand of grey model and strong nonlinear fitting ability of BP neural network. It u-ses actual measured values as the initial data,various prediction values of grey model as input data of neural net-work and final output data of neural network as combined prediction result. A case study shows that,better than a single forecasting model,the grey neural network model can offer improved prediction accuracy and ideal pre-diction result. Therefore,it is feasible and effective to use the model predict port container throughput.