汽车工程
汽車工程
기차공정
AUTOMOTIVE ENGINEERING
2014年
8期
923-928,949
,共7页
混合动力汽车%油耗%排放%线性二次型高斯最优控制%三效催化转化器
混閤動力汽車%油耗%排放%線性二次型高斯最優控製%三效催化轉化器
혼합동력기차%유모%배방%선성이차형고사최우공제%삼효최화전화기
hybrid electric vehicle%fuel consumption%emission%LQG optimal control%three-way cata-lytic converter
鉴于采用通常在特定工况下开发的控制策略的混合动力汽车在实际路况下的性能未必能达到最优的问题,将实际道路下的混合动力汽车能量管理策略问题转化为标准路况下的随机线性最优控制问题。建立了包含三效催化转化器热状态的混合动力汽车二次型状态空间方程,以发动机燃油消耗和三效催化转化器出口处的排放最小为优化目标,对蓄电池SOC、车速、三效催化转化器温度和出口排放等实际状态进行卡尔曼滤波估计,以对电机功率和发动机功率等输出变量进行最优反馈。仿真结果表明,与规则控制相比,所建立的随机最优控制策略能在满足车辆动力性要求的前提下,三效催化转化器的起燃时间约缩短160s,HC和CO的转化率明显提高。
鑒于採用通常在特定工況下開髮的控製策略的混閤動力汽車在實際路況下的性能未必能達到最優的問題,將實際道路下的混閤動力汽車能量管理策略問題轉化為標準路況下的隨機線性最優控製問題。建立瞭包含三效催化轉化器熱狀態的混閤動力汽車二次型狀態空間方程,以髮動機燃油消耗和三效催化轉化器齣口處的排放最小為優化目標,對蓄電池SOC、車速、三效催化轉化器溫度和齣口排放等實際狀態進行卡爾曼濾波估計,以對電機功率和髮動機功率等輸齣變量進行最優反饋。倣真結果錶明,與規則控製相比,所建立的隨機最優控製策略能在滿足車輛動力性要求的前提下,三效催化轉化器的起燃時間約縮短160s,HC和CO的轉化率明顯提高。
감우채용통상재특정공황하개발적공제책략적혼합동력기차재실제로황하적성능미필능체도최우적문제,장실제도로하적혼합동력기차능량관리책략문제전화위표준로황하적수궤선성최우공제문제。건립료포함삼효최화전화기열상태적혼합동력기차이차형상태공간방정,이발동궤연유소모화삼효최화전화기출구처적배방최소위우화목표,대축전지SOC、차속、삼효최화전화기온도화출구배방등실제상태진행잡이만려파고계,이대전궤공솔화발동궤공솔등수출변량진행최우반궤。방진결과표명,여규칙공제상비,소건립적수궤최우공제책략능재만족차량동력성요구적전제하,삼효최화전화기적기연시간약축단160s,HC화CO적전화솔명현제고。
In view of the problem that the hybrid electric vehicle ( HEV) adopting the control strategy com-monly developed with specific driving cycle may not necessarily achieve optimal performance in real operation condi-tion, the issue of energy management strategy for HEV in real road condition is converted into the issue of stochastic linear optimal control. The quadratic state-space equation for HEV is set up with consideration of the thermal state of three-way catalytic converter ( TWC) , and with minimizing the fuel consumption of engine and the emissions at the exit of TWC as optimization objectives, a Kalman filtering estimation is conducted on the real states including battery SOC, vehicle speed, TWC temperature and the emissions at TWC exit, so as to do the optimal feedback for output variables such as motor power and engine power. The simulation results show that compare with rule control, the linear quadratic Gaussian ( LQG) optimal control strategy set up can shorten the light-off time of TWC by around 160s and increase the converting rate of HC and CO obviously, while meeting the power performance requirements of vehicle.