北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
8期
1108-1114
,共7页
风力发电%风速%预测%神经网络%迟滞%卡尔曼滤波
風力髮電%風速%預測%神經網絡%遲滯%卡爾曼濾波
풍력발전%풍속%예측%신경망락%지체%잡이만려파
wind energy power generation%wind speed%forecasting%neural networks%hysteresis%Kalman filtering
通过将迟滞特性引入神经元激励函数的方式,构造了一种前向型迟滞神经网络模型。结合卡尔曼滤波方法,将其应用于风速时间序列的预测分析中。在原始风速时间序列的基础上,构造出风速变化率序列。采用迟滞神经网络分别对两种序列进行预测分析,并将预测结果利用卡尔曼滤波方法进行融合,从而得到最优预测估计结果。仿真实验结果表明,迟滞神经网络具有更加灵活的网络结构,能够有效改善网络的泛化能力,预测性能优于传统神经网络。采用卡尔曼滤波方法对预测结果进行融合后能够进一步提高预测精度,降低预测误差。
通過將遲滯特性引入神經元激勵函數的方式,構造瞭一種前嚮型遲滯神經網絡模型。結閤卡爾曼濾波方法,將其應用于風速時間序列的預測分析中。在原始風速時間序列的基礎上,構造齣風速變化率序列。採用遲滯神經網絡分彆對兩種序列進行預測分析,併將預測結果利用卡爾曼濾波方法進行融閤,從而得到最優預測估計結果。倣真實驗結果錶明,遲滯神經網絡具有更加靈活的網絡結構,能夠有效改善網絡的汎化能力,預測性能優于傳統神經網絡。採用卡爾曼濾波方法對預測結果進行融閤後能夠進一步提高預測精度,降低預測誤差。
통과장지체특성인입신경원격려함수적방식,구조료일충전향형지체신경망락모형。결합잡이만려파방법,장기응용우풍속시간서렬적예측분석중。재원시풍속시간서렬적기출상,구조출풍속변화솔서렬。채용지체신경망락분별대량충서렬진행예측분석,병장예측결과이용잡이만려파방법진행융합,종이득도최우예측고계결과。방진실험결과표명,지체신경망락구유경가령활적망락결구,능구유효개선망락적범화능력,예측성능우우전통신경망락。채용잡이만려파방법대예측결과진행융합후능구진일보제고예측정도,강저예측오차。
The hysteretic characteristic was introduced into the activation functions of neurons, and a forward hysteretic neural net-work was proposed. In combination with the Kalman filter algorithm, the hysteretic neural network was applied to wind speed forecas-ting. A change rate series of wind speed was constructed according to the original wind speed time series. Forecasting analysis of both the series was performed with the hysteretic neural network, these prediction results were fused using the Kalman filter algorithm, and thus the optimal estimated results were obtained. Simulation results show that the hysteretic neural network has more flexible structure, better generalization ability, and better prediction performance than the conventional neural network. The prediction performance can be further improved by Kalman filter fusion.