北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
8期
1060-1067
,共8页
何福善%向红亮%顾兴%刘东
何福善%嚮紅亮%顧興%劉東
하복선%향홍량%고흥%류동
双相不锈钢%空蚀%腐蚀%蒸馏水%海水
雙相不鏽鋼%空蝕%腐蝕%蒸餾水%海水
쌍상불수강%공식%부식%증류수%해수
duplex stainless steel%cavitation erosion%corrosion%distilled water%seawater
利用磁致伸缩空蚀试验机对Cr32Ni7Mo3N特级双相不锈钢在蒸馏水和人工海水中进行了空蚀实验,并采用扫描电镜跟踪观察了经不同时间段空蚀后试样的形貌。通过测量失重绘制了材料的累积失重量和失重率曲线。经电化学工作站测量了材料在静态与空蚀条件下的极化曲线和腐蚀电位变化。对比分析了Cr32Ni7Mo3N与SAF2205双相不锈钢在人工海水的抗空蚀能力。结果表明:Cr32Ni7Mo3N特级双相不锈钢空蚀破坏首先在铁素体薄弱区以及铁素体和奥氏体相界发生,并向铁素体内扩展,铁素体发生解离断裂脱落;奥氏体随着空蚀的进行,滑移线增多,显微硬度值增加,且人工海水中奥氏体显微硬度值比在蒸馏水中的高;铁素体大面积破坏后,奥氏体才失稳产生延性断裂脱落,奥氏体的存在延缓了破坏在整个材料表面上的扩展。空蚀与腐蚀交互影响导致材料在人工海水中加速破坏。 Cr32Ni7Mo3N特级双相不锈钢在人工海水中的抗空蚀能力优于SAF2205双相不锈钢。
利用磁緻伸縮空蝕試驗機對Cr32Ni7Mo3N特級雙相不鏽鋼在蒸餾水和人工海水中進行瞭空蝕實驗,併採用掃描電鏡跟蹤觀察瞭經不同時間段空蝕後試樣的形貌。通過測量失重繪製瞭材料的纍積失重量和失重率麯線。經電化學工作站測量瞭材料在靜態與空蝕條件下的極化麯線和腐蝕電位變化。對比分析瞭Cr32Ni7Mo3N與SAF2205雙相不鏽鋼在人工海水的抗空蝕能力。結果錶明:Cr32Ni7Mo3N特級雙相不鏽鋼空蝕破壞首先在鐵素體薄弱區以及鐵素體和奧氏體相界髮生,併嚮鐵素體內擴展,鐵素體髮生解離斷裂脫落;奧氏體隨著空蝕的進行,滑移線增多,顯微硬度值增加,且人工海水中奧氏體顯微硬度值比在蒸餾水中的高;鐵素體大麵積破壞後,奧氏體纔失穩產生延性斷裂脫落,奧氏體的存在延緩瞭破壞在整箇材料錶麵上的擴展。空蝕與腐蝕交互影響導緻材料在人工海水中加速破壞。 Cr32Ni7Mo3N特級雙相不鏽鋼在人工海水中的抗空蝕能力優于SAF2205雙相不鏽鋼。
이용자치신축공식시험궤대Cr32Ni7Mo3N특급쌍상불수강재증류수화인공해수중진행료공식실험,병채용소묘전경근종관찰료경불동시간단공식후시양적형모。통과측량실중회제료재료적루적실중량화실중솔곡선。경전화학공작참측량료재료재정태여공식조건하적겁화곡선화부식전위변화。대비분석료Cr32Ni7Mo3N여SAF2205쌍상불수강재인공해수적항공식능력。결과표명:Cr32Ni7Mo3N특급쌍상불수강공식파배수선재철소체박약구이급철소체화오씨체상계발생,병향철소체내확전,철소체발생해리단렬탈락;오씨체수착공식적진행,활이선증다,현미경도치증가,차인공해수중오씨체현미경도치비재증류수중적고;철소체대면적파배후,오씨체재실은산생연성단렬탈락,오씨체적존재연완료파배재정개재료표면상적확전。공식여부식교호영향도치재료재인공해수중가속파배。 Cr32Ni7Mo3N특급쌍상불수강재인공해수중적항공식능력우우SAF2205쌍상불수강。
The cavitation erosion behavior of Cr32Ni7Mo3N hyper duplex stainless steel in both distilled water and artificial seawa-ter was investigated by a magnetostrictive-induced cavitation facility. The micrographs of damaged surfaces after cavitation for different intervals of time were observed by scanning electron microscopy ( SEM) . The cumulative mass loss curves and cumulative mass loss rate curves of specimens were drawn by measuring the weight loss. The polarization curves and free-corrosion potentials of specimens were measured by electrochemical workstation in the static state and in the cavitation erosion condition. A comparison of cavitation erosion resistance was performed between the material and SAF2205 steel in artificial seawater. The results show that cavitation damage firstly occurs in the ferrite weak areas and ferrite-austenite phase boundaries, then gradually expands to the ferrite phase, and the ferrite phase dissociates off at last. Its failure mode is cleavage brittle fracture. As the cavitation erosion time prolongs, the austenite phase microhardness value increases because of slip lines generating more. During the entire cavitation, the microhardness value of the austenite phase in artificial seawater is higher than that in distilled water. When the ferrite phase is largely destroyed, austenite phase damage begins to happen and drop off. Its failure mode is ductile failure. So the existence of austenite delays fracture expanding to the entire material surface. In artificial seawater, the interaction of both cavitation erosion and corrosion leads to material failure accelera-tion, and the cavitation erosion resistance of Cr32Ni7Mo3N steel is better than that of SAF2205 steel.