电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2014年
17期
25-30
,共6页
张宁%胡兆光%周渝慧%肖欣%王一依%丛炘玮
張寧%鬍兆光%週渝慧%肖訢%王一依%叢炘瑋
장저%호조광%주투혜%초흔%왕일의%총흔위
机组组合%需求侧资源%模糊双目标优化模型%改进粒子群优化算法%温室气体减排
機組組閤%需求側資源%模糊雙目標優化模型%改進粒子群優化算法%溫室氣體減排
궤조조합%수구측자원%모호쌍목표우화모형%개진입자군우화산법%온실기체감배
unit commitment%demand side resources%fuzzy bi-objective optimization model%improved particle swarm optimization%greenhouse g as emission reduction
提出一种可促进电力系统碳减排的新型机组组合模型。相比于传统模型,该模型在以下两方面进行了改进:一是综合考虑供应侧资源与需求响应、电动汽车、分布式可再生能源发电等低碳的需求侧资源的最优组合;二是机组调度的规则在经济目标之外充分考虑碳排放目标,提出可计及目标相对优先级的模糊双目标优化方法。另外,在求解优化模型时,对粒子群优化算法进行改进,引入了遗传算法中的“交叉”、“变异”两个算子,提高了粒子群算法的全局寻优能力。通过对10机系统进行算例分析,验证了模型与算法的有效性。
提齣一種可促進電力繫統碳減排的新型機組組閤模型。相比于傳統模型,該模型在以下兩方麵進行瞭改進:一是綜閤攷慮供應側資源與需求響應、電動汽車、分佈式可再生能源髮電等低碳的需求側資源的最優組閤;二是機組調度的規則在經濟目標之外充分攷慮碳排放目標,提齣可計及目標相對優先級的模糊雙目標優化方法。另外,在求解優化模型時,對粒子群優化算法進行改進,引入瞭遺傳算法中的“交扠”、“變異”兩箇算子,提高瞭粒子群算法的全跼尋優能力。通過對10機繫統進行算例分析,驗證瞭模型與算法的有效性。
제출일충가촉진전력계통탄감배적신형궤조조합모형。상비우전통모형,해모형재이하량방면진행료개진:일시종합고필공응측자원여수구향응、전동기차、분포식가재생능원발전등저탄적수구측자원적최우조합;이시궤조조도적규칙재경제목표지외충분고필탄배방목표,제출가계급목표상대우선급적모호쌍목표우화방법。령외,재구해우화모형시,대입자군우화산법진행개진,인입료유전산법중적“교차”、“변이”량개산자,제고료입자군산법적전국심우능력。통과대10궤계통진행산례분석,험증료모형여산법적유효성。
A novel unit commitment model to promote carbon reduction of a power system is proposed.Compared with traditional models,this one is improved in the following two aspects.On the one hand,low-carbon demand side resources, such as demand response,vehicle to grid and distributed renewable energy generation,are considered together with power supply resources to achieve an optimal schedule.On the other hand,a new fuzzy bi-objective optimization approach that can reflect the relevant priority between objectives is presented to strike an effective balance between economic objective and carbon emission objective.To solve the unit commitment optimization problem,the particle swarm optimization (PSO) is improved by employing crossover operator and mutation operator from the genetic algorithm,which enhances the global optimization ability of PSO.Numerical studies of a 10-unit system have verified the effectiveness of the model and the algorithm.