东北林业大学学报
東北林業大學學報
동북임업대학학보
JOURNAL OF NORTHEAST FORESTRY UNIVERSITY
2014年
7期
154-156,165
,共4页
董云飞%孙玉军%王轶夫%郭孝玉
董雲飛%孫玉軍%王軼伕%郭孝玉
동운비%손옥군%왕질부%곽효옥
杉木%标准树高曲线%BP神经网络模型
杉木%標準樹高麯線%BP神經網絡模型
삼목%표준수고곡선%BP신경망락모형
Chinese fir%Generalized height-diameter model%BP neural network model
以福建省将乐县国有林场29块杉木人工林实测数据为例,运用BP 神经网络建模技术建立树高预测模型。分别确定输入量和隐层节点数,再经训练和优选,得到的最优模型结构为2∶5∶1,决定系数为0.9023,均方误差为1.7842。结合传统的两个标准树高曲线方程,利用检验数据分别对模型进行验证。结果表明:BP神经网络模型不管是拟合效果还是预测效果都明显优于传统方程,可以作为有效的树高预测技术。
以福建省將樂縣國有林場29塊杉木人工林實測數據為例,運用BP 神經網絡建模技術建立樹高預測模型。分彆確定輸入量和隱層節點數,再經訓練和優選,得到的最優模型結構為2∶5∶1,決定繫數為0.9023,均方誤差為1.7842。結閤傳統的兩箇標準樹高麯線方程,利用檢驗數據分彆對模型進行驗證。結果錶明:BP神經網絡模型不管是擬閤效果還是預測效果都明顯優于傳統方程,可以作為有效的樹高預測技術。
이복건성장악현국유림장29괴삼목인공림실측수거위례,운용BP 신경망락건모기술건립수고예측모형。분별학정수입량화은층절점수,재경훈련화우선,득도적최우모형결구위2∶5∶1,결정계수위0.9023,균방오차위1.7842。결합전통적량개표준수고곡선방정,이용검험수거분별대모형진행험증。결과표명:BP신경망락모형불관시의합효과환시예측효과도명현우우전통방정,가이작위유효적수고예측기술。
We used the data of 29 plots of Chinese fir located in national forest farm of Jiangle in Fujian Province to build height prediction model by BP neural network .First, the input variable and the hidden nodes were determined , then, by training and optimization, an optimum model was developed, with a model structure of 2∶5∶1, a determinate coefficient of 0.902 3 and error of mean square of 1.784 2.And then, it was compared with two traditional generalized height-diameter equations, the validation datasets were used to test the models , respectively .The fitting effect and prediction effect of BP neural network model are better than those of traditional equations , and BP neural network model can be used as effective tree height pre-diction technology .