东北林业大学学报
東北林業大學學報
동북임업대학학보
JOURNAL OF NORTHEAST FORESTRY UNIVERSITY
2014年
7期
44-47
,共4页
刘琼阁%彭道黎%涂云燕%李艳丽%高东启
劉瓊閣%彭道黎%塗雲燕%李豔麗%高東啟
류경각%팽도려%도운연%리염려%고동계
森林生物量%遥感和地形因子%多重相关性%偏最小二乘%主成分回归
森林生物量%遙感和地形因子%多重相關性%偏最小二乘%主成分迴歸
삼림생물량%요감화지형인자%다중상관성%편최소이승%주성분회귀
Forest biomass%Remote sensing and topographical factors%Multicollinearity%Partial least squares%Prin-cipal component regression
利用密云县2006年TM遥感影像和国家森林资源清查资料,以乔木林为研究对象,通过探讨森林生物量与影响森林生物量因子之间的关系,建立森林生物量估测模型。通过相关性分析,发现所选自变量间存在多重相关性,影响模型稳定性与估测精度。针对自变量间多重共线性问题,采用偏最小二乘法建立密云县森林生物量遥感估测模型,并与主成分回归方法建立的模型进行对比,用预留的样本对模型进行检验。结果表明:预测值与实测值相关系数为0.718,精度高达90.1%。运用模型反演,密云县森林乔木生物量估测值为893.388万t。
利用密雲縣2006年TM遙感影像和國傢森林資源清查資料,以喬木林為研究對象,通過探討森林生物量與影響森林生物量因子之間的關繫,建立森林生物量估測模型。通過相關性分析,髮現所選自變量間存在多重相關性,影響模型穩定性與估測精度。針對自變量間多重共線性問題,採用偏最小二乘法建立密雲縣森林生物量遙感估測模型,併與主成分迴歸方法建立的模型進行對比,用預留的樣本對模型進行檢驗。結果錶明:預測值與實測值相關繫數為0.718,精度高達90.1%。運用模型反縯,密雲縣森林喬木生物量估測值為893.388萬t。
이용밀운현2006년TM요감영상화국가삼림자원청사자료,이교목림위연구대상,통과탐토삼림생물량여영향삼림생물량인자지간적관계,건립삼림생물량고측모형。통과상관성분석,발현소선자변량간존재다중상관성,영향모형은정성여고측정도。침대자변량간다중공선성문제,채용편최소이승법건립밀운현삼림생물량요감고측모형,병여주성분회귀방법건립적모형진행대비,용예류적양본대모형진행검험。결과표명:예측치여실측치상관계수위0.718,정도고체90.1%。운용모형반연,밀운현삼림교목생물량고측치위893.388만t。
With TM remote sensing image and National Continuous Forest Inventory data of Miyun County in 2006, we studied the relationship between tree forest biomass and influencing factor , and established the forest biomass estimation model . Forest biomass remote sensing estimates were influenced by remote sensing factors and topographic factors .By the correla-tion analysis, the presence of multiple correlation between selected variables affected the stability and accuracy of the mod -el.In order to solve the problem of multicollinearity among variables , we used partial least squares method to establish re-mote sensing of forest biomass in Miyun County estimation model , and used principal component regression model to com-pare the models with control samples .The correlation coefficient between predicted and observed values was 07.18 with the accuracy of 90.1%.By examining the model with inversion forest trees in Miyun County , the estimated biomass was 8.934 million tons.