燃料化学学报
燃料化學學報
연료화학학보
JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY
2014年
8期
958-964
,共7页
熊伟%定明月%涂军令%陈伦刚%王铁军%张琦%马隆龙
熊偉%定明月%塗軍令%陳倫剛%王鐵軍%張琦%馬隆龍
웅위%정명월%도군령%진륜강%왕철군%장기%마륭룡
生物质热解气%镍基催化剂%复合载体%甲烷化
生物質熱解氣%鎳基催化劑%複閤載體%甲烷化
생물질열해기%얼기최화제%복합재체%갑완화
biomass pyrolysis gas%Ni-based catalyst%composite supporters%methanation
采用浸渍法制备了Ni金属负载在不同载体( SiO2、ZrO2、CeO2、Al2 O3和Al2 O3-CeO2)表面形成的催化剂,研究了水蒸气和载体对生物质热解气甲烷化反应性能的影响。结果表明,随着水蒸气量的增加CO转化率逐渐增大,而甲烷选择性呈现先增加后降低的变化趋势,当nwater/ngas比值为0.26时达到最大。载体Al2 O3相比SiO2、ZrO2和CeO2具有更大的比表面积和Ni金属分散度,促进了生物质热解气甲烷化反应活性和选择性。相比于Ni-Al2 O3催化剂,Al2 O3-CeO2复合载体具有更多的镍金属负载量活性金属分散度,以及最好的低温甲烷化反应性能。在300℃的低温条件下,Ni-Al2 O3-CeO2催化剂的CO转化率达到97%,CH4增长率达到110%。
採用浸漬法製備瞭Ni金屬負載在不同載體( SiO2、ZrO2、CeO2、Al2 O3和Al2 O3-CeO2)錶麵形成的催化劑,研究瞭水蒸氣和載體對生物質熱解氣甲烷化反應性能的影響。結果錶明,隨著水蒸氣量的增加CO轉化率逐漸增大,而甲烷選擇性呈現先增加後降低的變化趨勢,噹nwater/ngas比值為0.26時達到最大。載體Al2 O3相比SiO2、ZrO2和CeO2具有更大的比錶麵積和Ni金屬分散度,促進瞭生物質熱解氣甲烷化反應活性和選擇性。相比于Ni-Al2 O3催化劑,Al2 O3-CeO2複閤載體具有更多的鎳金屬負載量活性金屬分散度,以及最好的低溫甲烷化反應性能。在300℃的低溫條件下,Ni-Al2 O3-CeO2催化劑的CO轉化率達到97%,CH4增長率達到110%。
채용침지법제비료Ni금속부재재불동재체( SiO2、ZrO2、CeO2、Al2 O3화Al2 O3-CeO2)표면형성적최화제,연구료수증기화재체대생물질열해기갑완화반응성능적영향。결과표명,수착수증기량적증가CO전화솔축점증대,이갑완선택성정현선증가후강저적변화추세,당nwater/ngas비치위0.26시체도최대。재체Al2 O3상비SiO2、ZrO2화CeO2구유경대적비표면적화Ni금속분산도,촉진료생물질열해기갑완화반응활성화선택성。상비우Ni-Al2 O3최화제,Al2 O3-CeO2복합재체구유경다적얼금속부재량활성금속분산도,이급최호적저온갑완화반응성능。재300℃적저온조건하,Ni-Al2 O3-CeO2최화제적CO전화솔체도97%,CH4증장솔체도110%。
The supported Ni-based catalysts were prepared by impregnation method. Effects of different supports ( SiO2 , ZrO2 , CeO2 , Al2 O3 and Al2 O3-CeO2 ) and water vapour on catalyst microstructure and their performance in biomass pyrolysis gas methanation were investigated. The results indicated that CO conversion increased gradually, and the CH4 selectivity increased firstly, and then decreased with the increase of adding water vapor amount. Compared to SiO2 , ZrO2 and CeO2 , Al2 O3 presented higher BET surface area and Ni metal dispersion, which promoted the activity and selectivity for biomass pyrolysis gas methanation. Furthermore, the Al2 O3-CeO2 modified Ni-based catalyst showed more nickel metal loading and active metal dispersion comparing to the Ni-Al2 O3 catalyst, exhibiting more excellent methanation performances at lower temperature. CO conversion reached 97%, and CH4 growth rate reached 110% over the Ni-Al2 O3-CeO2 catalyst at 300℃.