化学工程
化學工程
화학공정
CHEMICAL ENGINEERING
2014年
8期
56-59,75
,共5页
袁成东%蒲万芬%郭正%姚凯乐%刘卓
袁成東%蒲萬芬%郭正%姚凱樂%劉卓
원성동%포만분%곽정%요개악%류탁
轻质原油%重质原油%氧化特性%氧化动力学
輕質原油%重質原油%氧化特性%氧化動力學
경질원유%중질원유%양화특성%양화동역학
light oil%heavy oil%oxidation behavior%oxidation kinetics
通过热重/微商热重-差热联用分析手段(TG/DTG-DTA)对比分析了一种轻质油和一种重质油的氧化特性和氧化动力学参数。实验结果表明:重质油和轻质油在常压空气流条件下的氧化反应都可以观察到3个明显的反应区间,分别为低温氧化反应(LTO),燃料沉积(FD)和高温氧化反应(HTO)。DTA 曲线显示重质油在低温氧化(LTO)和高温氧化(HTO)反应区间的放热峰热流量均高于轻质油,且在高温氧化反应阶段(HTO)更明显。对比分析TG和DTG曲线发现,重质油开始发生快速热重损失及出现最高质量损失速率的温度均高于轻质油。采用Ar-rhenius方法和Ingraham-Marrier(I-M)方法计算的重质油的氧化反应活化能(LTO,26.19-26.45 kJ/mol和HTO,150.45-157.11 kJ/mol)均高于轻质油的活化能(LTO,12.33-13.75 kJ/mol和HTO,107.31-122.31 kJ/mol),表明轻质油更容易和氧气发生氧化反应。这表明,相比稠油油藏注空气,轻质油藏注空气技术更容易实现较好的驱油效果。
通過熱重/微商熱重-差熱聯用分析手段(TG/DTG-DTA)對比分析瞭一種輕質油和一種重質油的氧化特性和氧化動力學參數。實驗結果錶明:重質油和輕質油在常壓空氣流條件下的氧化反應都可以觀察到3箇明顯的反應區間,分彆為低溫氧化反應(LTO),燃料沉積(FD)和高溫氧化反應(HTO)。DTA 麯線顯示重質油在低溫氧化(LTO)和高溫氧化(HTO)反應區間的放熱峰熱流量均高于輕質油,且在高溫氧化反應階段(HTO)更明顯。對比分析TG和DTG麯線髮現,重質油開始髮生快速熱重損失及齣現最高質量損失速率的溫度均高于輕質油。採用Ar-rhenius方法和Ingraham-Marrier(I-M)方法計算的重質油的氧化反應活化能(LTO,26.19-26.45 kJ/mol和HTO,150.45-157.11 kJ/mol)均高于輕質油的活化能(LTO,12.33-13.75 kJ/mol和HTO,107.31-122.31 kJ/mol),錶明輕質油更容易和氧氣髮生氧化反應。這錶明,相比稠油油藏註空氣,輕質油藏註空氣技術更容易實現較好的驅油效果。
통과열중/미상열중-차열련용분석수단(TG/DTG-DTA)대비분석료일충경질유화일충중질유적양화특성화양화동역학삼수。실험결과표명:중질유화경질유재상압공기류조건하적양화반응도가이관찰도3개명현적반응구간,분별위저온양화반응(LTO),연료침적(FD)화고온양화반응(HTO)。DTA 곡선현시중질유재저온양화(LTO)화고온양화(HTO)반응구간적방열봉열류량균고우경질유,차재고온양화반응계단(HTO)경명현。대비분석TG화DTG곡선발현,중질유개시발생쾌속열중손실급출현최고질량손실속솔적온도균고우경질유。채용Ar-rhenius방법화Ingraham-Marrier(I-M)방법계산적중질유적양화반응활화능(LTO,26.19-26.45 kJ/mol화HTO,150.45-157.11 kJ/mol)균고우경질유적활화능(LTO,12.33-13.75 kJ/mol화HTO,107.31-122.31 kJ/mol),표명경질유경용역화양기발생양화반응。저표명,상비주유유장주공기,경질유장주공기기술경용역실현교호적구유효과。
The oxidation behavior and kinetics of light oil and heavy oil were investigated using thermogravimetry/differential thermogravimetry (TG/DTG)and differential thermal analysis (DTA).The results indicate that for both light oil and heavy oil in oxidation with air,three distinct reaction regions are identified as low temperature oxidation (LTO),fuel deposition (FD)and high temperature oxidation (HTO).DTA curve shows that the heat flow of heavy oil in exothermic peaks (both LTO and HTO)is higher than that of light oil.And this phenomenon is more obvious in high temperature range.TG/DTG data exhibit that the temperatures where rapid mass loss begins and the greatest mass loss rate occurs are higher for heavy oil.Arrhenius method and Ingraham-Marrier method were employed to calculate the reaction activation energy.It reveals that the activation energy of heavy oil is higher than that of light oil.The activation energy of heavy oil for HTO and LTO is 150.45-157.1 1 kJ/mol and 26.19-26.45 kJ/mol,respectively,while the activation energy of light oil is 107.31-122.31 kJ/mol and 12.33-13.75 kJ/mol for HTO and LTO respectively.This indicates that light oil is easier to react with air,which means air injection into light oil reservoirs can achieve a better oil displacement efficiency,compared with heavy oil reservoirs.