石油钻采工艺
石油鑽採工藝
석유찬채공예
OIL DRILLING & PRODUCTION TECHNOLOGY
2014年
4期
64-70
,共7页
李波%王军磊%宁波%苏海洋
李波%王軍磊%寧波%囌海洋
리파%왕군뢰%저파%소해양
气井%压力%温度%积液%临界流速%临界流量%数学模型
氣井%壓力%溫度%積液%臨界流速%臨界流量%數學模型
기정%압력%온도%적액%림계류속%림계류량%수학모형
gas wells%pressure%temperature%accumulated fluid%critical flow velocity%critical flow rate%mathematical model
气井积液是产水气藏开发设计和气井生产管理面临的重要问题,但目前对气井流动机理与携液预测还存在争议。从气液两相流的基本流动机理出发,建立了考虑液滴变形和井斜影响下气井井筒的流型、温度、压力与携液综合预测模型,并用实际井数据对模型进行了验证。结果表明,所建模型可用于直井、斜井和水平井的产水气井井筒温度压力预测,预测误差小于5%;在环雾状流动情况下,井筒内液体以液滴和液膜的形式被完全带出井口,不会出现井筒积液;对常规垂直气井,利用井口数据便能判断气井积液情况,Turner 模型计算气井携液临界值较实际值偏大,李闽模型计算结果明显偏小,建议采用彭朝阳模型计算气井携液临界值;对斜井和水平井,则需要同时考虑液滴变形和井斜的影响,水平井近水平段携液临界流速和流量明显较垂直井段小,而造斜井段携液临界流速和临界流量随井斜角的增大先增大后减小,在井斜角为30°~60°之间达到最大值,因此造斜井段是气井积液判断的重点部位。
氣井積液是產水氣藏開髮設計和氣井生產管理麵臨的重要問題,但目前對氣井流動機理與攜液預測還存在爭議。從氣液兩相流的基本流動機理齣髮,建立瞭攷慮液滴變形和井斜影響下氣井井筒的流型、溫度、壓力與攜液綜閤預測模型,併用實際井數據對模型進行瞭驗證。結果錶明,所建模型可用于直井、斜井和水平井的產水氣井井筒溫度壓力預測,預測誤差小于5%;在環霧狀流動情況下,井筒內液體以液滴和液膜的形式被完全帶齣井口,不會齣現井筒積液;對常規垂直氣井,利用井口數據便能判斷氣井積液情況,Turner 模型計算氣井攜液臨界值較實際值偏大,李閩模型計算結果明顯偏小,建議採用彭朝暘模型計算氣井攜液臨界值;對斜井和水平井,則需要同時攷慮液滴變形和井斜的影響,水平井近水平段攜液臨界流速和流量明顯較垂直井段小,而造斜井段攜液臨界流速和臨界流量隨井斜角的增大先增大後減小,在井斜角為30°~60°之間達到最大值,因此造斜井段是氣井積液判斷的重點部位。
기정적액시산수기장개발설계화기정생산관리면림적중요문제,단목전대기정류동궤리여휴액예측환존재쟁의。종기액량상류적기본류동궤리출발,건립료고필액적변형화정사영향하기정정통적류형、온도、압력여휴액종합예측모형,병용실제정수거대모형진행료험증。결과표명,소건모형가용우직정、사정화수평정적산수기정정통온도압력예측,예측오차소우5%;재배무상류동정황하,정통내액체이액적화액막적형식피완전대출정구,불회출현정통적액;대상규수직기정,이용정구수거편능판단기정적액정황,Turner 모형계산기정휴액림계치교실제치편대,리민모형계산결과명현편소,건의채용팽조양모형계산기정휴액림계치;대사정화수평정,칙수요동시고필액적변형화정사적영향,수평정근수평단휴액림계류속화류량명현교수직정단소,이조사정단휴액림계류속화림계류량수정사각적증대선증대후감소,재정사각위30°~60°지간체도최대치,인차조사정단시기정적액판단적중점부위。
Accumulated fluid in gas well is a key issue confronted in development design of water-producing gas pools and pro-duction management of gas wells, but at present, there are controversies on flow mechanism and water carrying prediction in gas wells. From the basic flow mechanism of two-phase flow of gas and liquid, a comprehensive prediction model was built to predict the flow pattern, temperature, pressure and water-carrying in gas wells, and this model was verified using actual well data. The result shows that the model so built can be used to predict the wellbore temperature and pressure of water-producing vertical wells, deviated wells and horizontal wells, and the prediction error is less than 5%. Under condition of annular mist flow, the fluid in the wellbore is carried out of the wellhead completely in the forms of liquid drop and membrane, so no wellbore water shall be accumulated; for conventional vertical gas wells, the wellhead data can be used to determine the accumulated fluid in gas wells; the critical value of liquid carrying in gas wells calculated by Turner model is larger than the actual value, and that calculated by Li Min model is on the small side. So it is suggested that Peng Chaoyang Model be used to calculate the liquid-carrying critical value in gas wells. For deviated wells and horizontal wells, the effects of drop deformation and hole deviation should both be considered. The liquid-carrying critical flow velocity and flowrate in horizontal section in horizontal wells is obviously smaller than that in vertical wells, while the liquid-carrying critical flow velocity and flowrate in angle buildup section first increases with the hole drift angle, but then decreases, reaching the peak when hole drift angle is between 30°and 60°, so angle buildup section is a key place for determination of accumulated fluid in gas wells.