铁道科学与工程学报
鐵道科學與工程學報
철도과학여공정학보
JOURNAL OF RAILWAY SCIENCE AND ENGINEERING
2014年
4期
103-108
,共6页
于天剑%陈雅婷%陈特放%陈春阳
于天劍%陳雅婷%陳特放%陳春暘
우천검%진아정%진특방%진춘양
故障诊断%隐马尔可夫模型%感应电机%模式识别
故障診斷%隱馬爾可伕模型%感應電機%模式識彆
고장진단%은마이가부모형%감응전궤%모식식별
fault diagnosis%HMM model%induction motor%pattern recognition
提出一种基于隐马尔可夫模型的方法用于故障的诊断与检测,该方法采用HMM与模式识别相结合的方法,通过对电机的电压电流信号进行特征提取和分析,构建电压电流空间模型,并且每个模型可以作为一级,每一级可以提高其判断的准确度,而HMM模型用做一个故障分类器来使用,相比于自适应模糊推理方法(MLFF)和多层前馈网络法(ANFIS),其准度有了很大提高,并且减少了计算。通过对不同故障诊断实例阐述了基于HMM的故障诊断方法的有效性和可行性。
提齣一種基于隱馬爾可伕模型的方法用于故障的診斷與檢測,該方法採用HMM與模式識彆相結閤的方法,通過對電機的電壓電流信號進行特徵提取和分析,構建電壓電流空間模型,併且每箇模型可以作為一級,每一級可以提高其判斷的準確度,而HMM模型用做一箇故障分類器來使用,相比于自適應模糊推理方法(MLFF)和多層前饋網絡法(ANFIS),其準度有瞭很大提高,併且減少瞭計算。通過對不同故障診斷實例闡述瞭基于HMM的故障診斷方法的有效性和可行性。
제출일충기우은마이가부모형적방법용우고장적진단여검측,해방법채용HMM여모식식별상결합적방법,통과대전궤적전압전류신호진행특정제취화분석,구건전압전류공간모형,병차매개모형가이작위일급,매일급가이제고기판단적준학도,이HMM모형용주일개고장분류기래사용,상비우자괄응모호추리방법(MLFF)화다층전궤망락법(ANFIS),기준도유료흔대제고,병차감소료계산。통과대불동고장진단실례천술료기우HMM적고장진단방법적유효성화가행성。
A method of hidden Markov based on Markov models was proposed in this paper for diagnosis and fault detection.Thereinto,the method combining HMM technique and pattern recognition feature can be utilized to extract and analyze the voltage and current signals of the motor,thereby constructing the voltage and the current space model.Moreover,each model can be regarded as a level which could improve the judging accuracy,while HMM model was used as a fault classifier,and in comparison with the adaptive fuzzy reasoning method (MLFF) and multilayer feed-forward network (ANFIS),its accuracy was improved greatly with less calculation number. Finally,the effectiveness of the method of fault diagnosis based on HMM and the feasibility were verified through the different fault diagnosis examples.