岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
8期
2415-2425
,共11页
雷宏武%金光荣%石岩%李佳琦%王福刚%许天福
雷宏武%金光榮%石巖%李佳琦%王福剛%許天福
뢰굉무%금광영%석암%리가기%왕복강%허천복
热-水动力-力学耦合过程%Biot固结理论%CO2地质储存%数值模拟
熱-水動力-力學耦閤過程%Biot固結理論%CO2地質儲存%數值模擬
열-수동력-역학우합과정%Biot고결이론%CO2지질저존%수치모의
coupled thermo-hydro-mechanical (THM) process%Biot consolidation theory%CO2 geological sequestration%numerical simulation
在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开发了THM模拟器TOUGH2Biot。该模拟器中热和水动力过程是全耦合,力学过程是部分耦合。通过与解析解的对比,验证了其正确性。基于鄂尔多斯盆地CCS示范工程,采用TOUGH2Biot研究了CO2注入地层后的THM响应。结果显示CO2的注入引起流体压力急剧增加,地层有效应力减小,地表隆起,隆起大小在几十个厘米,同时孔渗增加,利于CO2注入引起的压力上升向外消散。CO2注入最有可能导致剪切破坏的位置位于最大速率注入点上部盖层,其次为靠近地表的位置。
在地下流動繫統問題的研究中,熱-水動力-力學(THM)耦閤過程是研究的熱點問題。在地下多相非等溫數值模擬軟件TOUGH2的框架內,基于Biot固結理論和摩爾-庫崙破壞判定準則,建立瞭THM耦閤模型;採用積分有限差和有限元聯閤的空間離散方法,開髮瞭THM模擬器TOUGH2Biot。該模擬器中熱和水動力過程是全耦閤,力學過程是部分耦閤。通過與解析解的對比,驗證瞭其正確性。基于鄂爾多斯盆地CCS示範工程,採用TOUGH2Biot研究瞭CO2註入地層後的THM響應。結果顯示CO2的註入引起流體壓力急劇增加,地層有效應力減小,地錶隆起,隆起大小在幾十箇釐米,同時孔滲增加,利于CO2註入引起的壓力上升嚮外消散。CO2註入最有可能導緻剪切破壞的位置位于最大速率註入點上部蓋層,其次為靠近地錶的位置。
재지하류동계통문제적연구중,열-수동력-역학(THM)우합과정시연구적열점문제。재지하다상비등온수치모의연건TOUGH2적광가내,기우Biot고결이론화마이-고륜파배판정준칙,건립료THM우합모형;채용적분유한차화유한원연합적공간리산방법,개발료THM모의기TOUGH2Biot。해모의기중열화수동력과정시전우합,역학과정시부분우합。통과여해석해적대비,험증료기정학성。기우악이다사분지CCS시범공정,채용TOUGH2Biot연구료CO2주입지층후적THM향응。결과현시CO2적주입인기류체압력급극증가,지층유효응력감소,지표륭기,륭기대소재궤십개전미,동시공삼증가,리우CO2주입인기적압력상승향외소산。CO2주입최유가능도치전절파배적위치위우최대속솔주입점상부개층,기차위고근지표적위치。
Coupled thermo-hydro-mechanical (THM) process is an important and hot-spot issue. Based on Biot consolidation theory and Morh-Coulomb failure criteria, coupled THM model is built in the framework of TOUGH2 which is a multiphase fluid flow, nonisothermal simulation software. At the same time, a new simulator-TOUGH2Biot is developed with fully coupling between thermal and hydrodynamic processes and partly coupling for mechanics, using mixed integral finite difference and finite element method. Analytical solution is employed to verify the simulator. Finally, TOUGH2Biot is used to numerically analyze the THM response of formations after CO2 injection. The results show that the CO2 injection induces to a quick increase in fluid pressure and corresponding decrease in effective stress. Consequently, there is an uplift of tens of centimeters at the surface. Also, the porosity and permeability are enhanced, which are favorable for dissipation of pressure buildup. The most possibility of shear slip failure is at the caprock above the maximum injection rate location. The second potential failure location is near the surface.