岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
8期
2163-2170,2178
,共9页
刘杰%李建林%胡静%蔡健%赵宗勇
劉傑%李建林%鬍靜%蔡健%趙宗勇
류걸%리건림%호정%채건%조종용
劈裂砂岩%渗流量%凹凸高差%节理粗糙度系数
劈裂砂巖%滲流量%凹凸高差%節理粗糙度繫數
벽렬사암%삼류량%요철고차%절리조조도계수
splitting sandstone%seepage flow%concave-convex height different%joint roughness coefficient
采用宜昌劈裂砂岩,在有、无砂岩填充条件下,分别从轴压、围压、劈裂面面积、凹凸高差、迹线长度、劈裂面2D 投影面积、进出口长度、结构面粗糙度对渗流量的影响规律进行了对比分析。研究结果表明:有、无砂粒填充下轴压与渗流量均呈线性递增关系;无填充时围压与渗流量呈对数递减关系,有充填时围压与渗流量呈线性关系;无充填时渗流量与流面积呈三次函数关系,而充填后过流面积对渗流量几乎无影响;凹凸高差、2D 面积与渗流量的关系也有相似规律,分析认为,这主要是砂粒充填后带来的过流通道要远大于上述三因素对过流通道的改变;无充填时,渗流量随迹线长度线性递减,有填充时该规律被淹没;无论有、无填充,渗流量与过流面粗糙度系数在一定范围内均呈现二次函数关系。这些规律能指导渗流测量时各因素的优先次序,可有效减少对次要影响因素的测量工作,同时可对渗流的数值模拟提供参考。
採用宜昌劈裂砂巖,在有、無砂巖填充條件下,分彆從軸壓、圍壓、劈裂麵麵積、凹凸高差、跡線長度、劈裂麵2D 投影麵積、進齣口長度、結構麵粗糙度對滲流量的影響規律進行瞭對比分析。研究結果錶明:有、無砂粒填充下軸壓與滲流量均呈線性遞增關繫;無填充時圍壓與滲流量呈對數遞減關繫,有充填時圍壓與滲流量呈線性關繫;無充填時滲流量與流麵積呈三次函數關繫,而充填後過流麵積對滲流量幾乎無影響;凹凸高差、2D 麵積與滲流量的關繫也有相似規律,分析認為,這主要是砂粒充填後帶來的過流通道要遠大于上述三因素對過流通道的改變;無充填時,滲流量隨跡線長度線性遞減,有填充時該規律被淹沒;無論有、無填充,滲流量與過流麵粗糙度繫數在一定範圍內均呈現二次函數關繫。這些規律能指導滲流測量時各因素的優先次序,可有效減少對次要影響因素的測量工作,同時可對滲流的數值模擬提供參攷。
채용의창벽렬사암,재유、무사암전충조건하,분별종축압、위압、벽렬면면적、요철고차、적선장도、벽렬면2D 투영면적、진출구장도、결구면조조도대삼류량적영향규률진행료대비분석。연구결과표명:유、무사립전충하축압여삼류량균정선성체증관계;무전충시위압여삼류량정대수체감관계,유충전시위압여삼류량정선성관계;무충전시삼류량여류면적정삼차함수관계,이충전후과류면적대삼류량궤호무영향;요철고차、2D 면적여삼류량적관계야유상사규률,분석인위,저주요시사립충전후대래적과류통도요원대우상술삼인소대과류통도적개변;무충전시,삼류량수적선장도선성체감,유전충시해규률피엄몰;무론유、무전충,삼류량여과류면조조도계수재일정범위내균정현이차함수관계。저사규률능지도삼류측량시각인소적우선차서,가유효감소대차요영향인소적측량공작,동시가대삼류적수치모의제공삼고。
Taking the splitting sandstone from Yichang as the research object, the paper respectively studies about seepage flow variation rules caused by axial compressions, confining pressures, splitting surface area, concave-convex height different, trace length, 2D projected area of splitting surface, import and export length and joint roughness. The results suggest that the axial compression and seepage flow are in linear increasing relation whether the specimen is filled or not;confining pressures and seepage flow are in a relationship of logarithmic decrement when the specimen is unfilled, while in linear relation as the specimen is filled. Under non-filler condition, the seepage area has a cubic function to the seepage velocity, while there is no influence under filling condition, and at the same time, the concave-convex height difference, 2D projected area have the same rule with seepage velocity. Analysis suggests that the influence on seepage passages of the three factors is far from that caused by fillers;under non-filler condition, the trace length reduces linearly with the seepage velocity;the joint roughness coefficient shows a quadratic functional relationship with the seepage flow whether the specimen is filled or not. These rules can guide the priorities of factors in the seepage measurement, and effectively reduce the measurement of those secondary factors and provide a reference for numerical simulation of seepage.