科技与创新
科技與創新
과기여창신
Science and Technology & Innovation
2014年
14期
139-139
,共1页
周期信号%频谱%矩形脉冲%波形
週期信號%頻譜%矩形脈遲%波形
주기신호%빈보%구형맥충%파형
periodic signal%spectrum%rectangular pulse%waveform
周期信号频谱分析在信号与系统这一学科中占有极其重要的地位。满足狄里赫利条件的非正弦周期函数可以展开为傅里叶级数,基于此事实,以傅里叶变化作为信号分析的理论基础,可以将非正弦周期信号视为一个直流分量与若干个不同频率的正弦分量之和。通过对频谱宽带的理解,研究了矩形脉冲波形的变化对其频谱的影响。
週期信號頻譜分析在信號與繫統這一學科中佔有極其重要的地位。滿足狄裏赫利條件的非正絃週期函數可以展開為傅裏葉級數,基于此事實,以傅裏葉變化作為信號分析的理論基礎,可以將非正絃週期信號視為一箇直流分量與若榦箇不同頻率的正絃分量之和。通過對頻譜寬帶的理解,研究瞭矩形脈遲波形的變化對其頻譜的影響。
주기신호빈보분석재신호여계통저일학과중점유겁기중요적지위。만족적리혁리조건적비정현주기함수가이전개위부리협급수,기우차사실,이부리협변화작위신호분석적이론기출,가이장비정현주기신호시위일개직류분량여약간개불동빈솔적정현분량지화。통과대빈보관대적리해,연구료구형맥충파형적변화대기빈보적영향。
The periodic signal spectrum analysis plays an extremely important role in this discipline in signals and systems. Satisfy the conditions of non-sinusoidal periodic Dirichlet functions can be expanded into Fourier series, based on this fact, the theoretical basis of the change as a signal to Fourier analysis can be considered as a non-sinusoidal periodic signals with several DC component sinusoidal components of different frequencies. By understanding the broadband spectrum, the effect of the rectangular pulse waveform changes its spectrum.