声学技术
聲學技術
성학기술
Technical Acousitics
2014年
4期
359-362
,共4页
袁帅%杨宏晖%申昇
袁帥%楊宏暉%申昇
원수%양굉휘%신승
水声目标识别%特征选择%互信息%排序
水聲目標識彆%特徵選擇%互信息%排序
수성목표식별%특정선택%호신식%배서
underwater acoustic target classification%feature selection%mutual information%sorting
特征选择是水声目标识别领域的重要环节之一。提出基于互信息的顺序向前特征选择算法,通过计算特征之间的互信息和特征与类别间的互信息对所有特征的分类能力进行排序。提取了实测4类水声目标进行特征选择和分类实验,结果表明:该算法能够选择有效特征子集,得到较高的正确识别率,并且运行速度快,稳定性强。
特徵選擇是水聲目標識彆領域的重要環節之一。提齣基于互信息的順序嚮前特徵選擇算法,通過計算特徵之間的互信息和特徵與類彆間的互信息對所有特徵的分類能力進行排序。提取瞭實測4類水聲目標進行特徵選擇和分類實驗,結果錶明:該算法能夠選擇有效特徵子集,得到較高的正確識彆率,併且運行速度快,穩定性彊。
특정선택시수성목표식별영역적중요배절지일。제출기우호신식적순서향전특정선택산법,통과계산특정지간적호신식화특정여유별간적호신식대소유특정적분류능력진행배서。제취료실측4류수성목표진행특정선택화분류실험,결과표명:해산법능구선택유효특정자집,득도교고적정학식별솔,병차운행속도쾌,은정성강。
Feature selection is important in classifying underwater acoustic target. In this paper, an algorithm of forward order feature selection based on mutual information (SFFSMI algorithm) is proposed. This algorithm sorts the classi-fying abilities of all features by calculating mutual information between different features and the mutual information between features and classes. The features of 4 classes of underwater targets are extracted and used for feature selection and classification experiment. Experimental results show that, this algorithm can choose effective feature subsets with high correct identification rate and it runs fast with high stability.