浙江师范大学学报(自然科学版)
浙江師範大學學報(自然科學版)
절강사범대학학보(자연과학판)
JOURNAL OF ZHEJIANG NORMAL UNIVERSITY(NATURAL SCIENCES)
2014年
3期
280-287
,共8页
徐同花%赵建民%朱信忠%迟崇巍%叶津佐
徐同花%趙建民%硃信忠%遲崇巍%葉津佐
서동화%조건민%주신충%지숭외%협진좌
手术导航%图像融合%图像配准%相似性度量
手術導航%圖像融閤%圖像配準%相似性度量
수술도항%도상융합%도상배준%상사성도량
surgical navigation%image fusion%image registration%similarity measure
手术中肿瘤的精确定位一直是国际上的研究热点及挑战性问题.对光学分子影像手术导航系统中的图像融合算法进行了研究,对图像数据进行预处理后,利用梯度信息确定荧光图像兴趣点,缩小配准点的搜索区域.配准过程采用穷尽搜索策略,以平均绝对差(MAD)、均方差(MSD)和归一化积相关(NPROD)作为相似性度量,并利用域法修正的方法对兴趣点坐标进行修正,避免了因兴趣点过度偏离图像中心而导致配准失败.该算法将32组图像数据的平均配准时间从原始算法的539.384 s 缩短到43.2006 s(MAD),46.6853 s (MSD)及85.9786 s(NPROD).采用这3种相似性度量算法的融合效果均优于原始算法.
手術中腫瘤的精確定位一直是國際上的研究熱點及挑戰性問題.對光學分子影像手術導航繫統中的圖像融閤算法進行瞭研究,對圖像數據進行預處理後,利用梯度信息確定熒光圖像興趣點,縮小配準點的搜索區域.配準過程採用窮儘搜索策略,以平均絕對差(MAD)、均方差(MSD)和歸一化積相關(NPROD)作為相似性度量,併利用域法脩正的方法對興趣點坐標進行脩正,避免瞭因興趣點過度偏離圖像中心而導緻配準失敗.該算法將32組圖像數據的平均配準時間從原始算法的539.384 s 縮短到43.2006 s(MAD),46.6853 s (MSD)及85.9786 s(NPROD).採用這3種相似性度量算法的融閤效果均優于原始算法.
수술중종류적정학정위일직시국제상적연구열점급도전성문제.대광학분자영상수술도항계통중적도상융합산법진행료연구,대도상수거진행예처리후,이용제도신식학정형광도상흥취점,축소배준점적수색구역.배준과정채용궁진수색책략,이평균절대차(MAD)、균방차(MSD)화귀일화적상관(NPROD)작위상사성도량,병이용역법수정적방법대흥취점좌표진행수정,피면료인흥취점과도편리도상중심이도치배준실패.해산법장32조도상수거적평균배준시간종원시산법적539.384 s 축단도43.2006 s(MAD),46.6853 s (MSD)급85.9786 s(NPROD).채용저3충상사성도량산법적융합효과균우우원시산법.
Intraoperative precise iocalization of tumor had been an international research hotspot and challeng -ing issue .The image fusion algorithm in optical molecular imaging surgical navigation system was conducted . Preprocessed the image data , got the interest point of fluorescence image by using its gradient information , the search region of registration points was narrowed down .Registration process used exhaustion search strategy , Mean Absolute Deviation ( MAD ) , Mean Square Deviation ( MSD ) and Normalized Product Correlation ( NPROD) as the similarity metrics , and the coordinates of interest point were corrected by the domain correc-tion method to avoid registration failure caused by excessive deviation of the interest points from image center . The algorithm shortened the average registration time of 32 sets of image data from 539.384 s to 43.200 6 s (MAD),46.685 3 s(MSD) and 85.978 6 s(NPROD).The image fusion effect of algorithm using the three similarity measure was found better than that of the original algorithm .