应用科技
應用科技
응용과기
YING YONG KE JI
2014年
4期
10-13,68
,共5页
核电设备%灰色系统%趋势预测%GM(1,1)%BP神经网络
覈電設備%灰色繫統%趨勢預測%GM(1,1)%BP神經網絡
핵전설비%회색계통%추세예측%GM(1,1)%BP신경망락
nuclear power plants%gray system%trend prediction%GM(1,1) model%back propagation neural network
根据核电设备运行参数的历史数据,利用灰色系统GM(1,1)预测模型建立动态微分方程,并预测其发展趋势。如果原始数据序列呈线性变化且还原值序列的相对误差平方和较大,则用BP神经网络对GM(1,1)的预测结果进行修正,以提高预测精度。文中以二回路辐射剂量率的预测为例,对该方法进行了仿真实验验证。验证结果表明,用BP 神经网络对GM(1,1)的预测结果进行修正相比较GM(1,1)预测模型,预测精度得到了显著提高。
根據覈電設備運行參數的歷史數據,利用灰色繫統GM(1,1)預測模型建立動態微分方程,併預測其髮展趨勢。如果原始數據序列呈線性變化且還原值序列的相對誤差平方和較大,則用BP神經網絡對GM(1,1)的預測結果進行脩正,以提高預測精度。文中以二迴路輻射劑量率的預測為例,對該方法進行瞭倣真實驗驗證。驗證結果錶明,用BP 神經網絡對GM(1,1)的預測結果進行脩正相比較GM(1,1)預測模型,預測精度得到瞭顯著提高。
근거핵전설비운행삼수적역사수거,이용회색계통GM(1,1)예측모형건립동태미분방정,병예측기발전추세。여과원시수거서렬정선성변화차환원치서렬적상대오차평방화교대,칙용BP신경망락대GM(1,1)적예측결과진행수정,이제고예측정도。문중이이회로복사제량솔적예측위례,대해방법진행료방진실험험증。험증결과표명,용BP 신경망락대GM(1,1)적예측결과진행수정상비교GM(1,1)예측모형,예측정도득도료현저제고。
Based on the historical data of the nuclear power plants (NPPs) operating parameters, the gray system GM( 1,1) prediction model is used to build the dynamic differential equations and predict their own growing trend . In order to improve the prediction accuracy , the back propagation ( BP ) neural network is used to revise the pre-diction results of the gray GM(1,1) prediction model, in case that raw data sequence changes linearly and restored value sequence ’ s square sum of relative error is large .For validating the method ,the radiation dose rate forecasting in the second loop of the nuclear power plant ( NPP ) is taken as an example and the result shows that when using back propagation(BP) neural network to correct the GM(1,1)prediction results, the prediction accuracy is signifi-cantly improved , compared to GM ( 1,1 ) prediction model .