新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2014年
4期
241-264
,共24页
张强%程新兵%黄佳琦%彭翃杰%魏飞
張彊%程新兵%黃佳琦%彭翃傑%魏飛
장강%정신병%황가기%팽굉걸%위비
锂硫电池%碳硫复合正极%纳米炭%碳纳米管%石墨烯%多孔炭%杂化物
鋰硫電池%碳硫複閤正極%納米炭%碳納米管%石墨烯%多孔炭%雜化物
리류전지%탄류복합정겁%납미탄%탄납미관%석묵희%다공탄%잡화물
Lithium-sulfur battery%Carbon/ sulfur composite%Nanocarbon%Carbon nanotube%Graphene%Porous carbon%Hybrids
随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛的应用。经过20多年的发展,现有基于嵌锂化合物正极的锂离子电池已接近其理论容量,但仍不能满足高速发展的电子工业和新兴的电动汽车等行业的要求,寻找具有更高能量密度的电池系统迫在眉睫。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。但是锂硫电池中也存在硫的电导率极低、多硫化物溶解迁移等问题,使其在走向实用化的过程中遇到许多困难。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的高效利用。综述了基于纳米炭-硫复合正极材料,尤其是碳纳米管、石墨烯、多孔炭以及其杂化物等材料复合的电极,分析其结构与锂硫电池性能的关系,并展望锂硫电池的发展方向。
隨著石墨負極的成功商用,鋰離子電池在智能手機、筆記本電腦等便攜式電子設備中已得到廣汎的應用。經過20多年的髮展,現有基于嵌鋰化閤物正極的鋰離子電池已接近其理論容量,但仍不能滿足高速髮展的電子工業和新興的電動汽車等行業的要求,尋找具有更高能量密度的電池繫統迫在眉睫。鋰硫電池繫統具有極高的理論能量密度,在多種儲能繫統中是最具潛力的一種二次電池。但是鋰硫電池中也存在硫的電導率極低、多硫化物溶解遷移等問題,使其在走嚮實用化的過程中遇到許多睏難。納米碳質材料在新型鋰硫電池的開髮過程中處于重要地位,通過納米炭的引入,可以穫得導電複閤正極材料,控製多硫化物的穿梭,從而有望實現正極硫材料的高效利用。綜述瞭基于納米炭-硫複閤正極材料,尤其是碳納米管、石墨烯、多孔炭以及其雜化物等材料複閤的電極,分析其結構與鋰硫電池性能的關繫,併展望鋰硫電池的髮展方嚮。
수착석묵부겁적성공상용,리리자전지재지능수궤、필기본전뇌등편휴식전자설비중이득도엄범적응용。경과20다년적발전,현유기우감리화합물정겁적리리자전지이접근기이론용량,단잉불능만족고속발전적전자공업화신흥적전동기차등행업적요구,심조구유경고능량밀도적전지계통박재미첩。리류전지계통구유겁고적이론능량밀도,재다충저능계통중시최구잠력적일충이차전지。단시리류전지중야존재류적전도솔겁저、다류화물용해천이등문제,사기재주향실용화적과정중우도허다곤난。납미탄질재료재신형리류전지적개발과정중처우중요지위,통과납미탄적인입,가이획득도전복합정겁재료,공제다류화물적천사,종이유망실현정겁류재료적고효이용。종술료기우납미탄-류복합정겁재료,우기시탄납미관、석묵희、다공탄이급기잡화물등재료복합적전겁,분석기결구여리류전지성능적관계,병전망리류전지적발전방향。
Lithium-ion batteries ( LIBs) are extensively used in numerous portable devices such as smart-phones and laptops. However, current LIBs based on the conventional intercalation mechanism cannot meet the requirements of the electronics industry and electric vehicles although they are approaching their theoretical capacity. Therefore, it is extremely urgent to seek for systems with higher energy densities. Among various promising candidates, lithium-sulfur (Li-S) batteries with a high theoretical capacity are very attractive. However, the commercial use of Li-S batteries still faces obstacles such as the low electrical conductivity of sul-fur and lithium sulfide and the dissolution of polysulfides. The introduction of nanocarbon materials into Li-S batteries sheds light on the efficient utilization of sulfur by improving the conductivity of the composites and restraining the shuttle effect of polysulfides. Here, we give a brief review of recent progress on carbon/ sulfur composites, especially carbon nanotube-, graphene-and porous car-bon-based hybrids, new insights on the relationships between the structure and the electrochemical performance, and propose some important aspects for the future development of Li-S batteries.