国防科技大学学报
國防科技大學學報
국방과기대학학보
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
2014年
4期
102-111
,共10页
郑伟%许厚泽%钟敏%刘成恕%员美娟
鄭偉%許厚澤%鐘敏%劉成恕%員美娟
정위%허후택%종민%류성서%원미연
CSGM%卫星跟踪卫星%关键载荷%轨道参数%卫星重力反演
CSGM%衛星跟蹤衛星%關鍵載荷%軌道參數%衛星重力反縯
CSGM%위성근종위성%관건재하%궤도삼수%위성중력반연
China’s satellite gravity mission%satellite-to-satellite tracking%key payload%orbital parameter%satellite gravity recovery
基于卫星跟踪模式的优化选取、关键载荷的优化组合、轨道参数的优化设计、仿真模拟的先期启动和反演方法的优化改进,开展了我国将来CSGM(China’s Satellite Gravity Mission)卫星重力测量计划实施的研究论证。由于卫星跟踪卫星高低/低低(SST-HL/LL)模式对地球中长波重力场的探测精度较高、技术要求相对较低,而且可借鉴当前GRACE卫星的成功经验,因此建议将来CSGM卫星重力测量计划采用SST-HL/LL模式;建议开展激光干涉星间测距仪、复合GPS接收机、非保守力补偿系统、卫星体和加速度计质心调节装置等关键载荷的先期研制;建议将来CSGM卫星的轨道高度(300~400km)和星间距离(100±50km)选择在已有重力卫星的测量盲区;建议将仿真技术应用于CSGM卫星的方案论证、系统设计、部件研制、产品检验、空中使用、故障分析等研发和运行的全过程;对比分析了卫星轨道摄动法、动力学法、能量守恒法和加速度法的优缺点,建议寻求新型、高精度、高效率和全频段的卫星重力反演方法;提出将来CSGM卫星重力测量计划的预期科学目标:在300阶处,累计大地水准面精度和累计重力异常精度分别为1~5 cm和1~5 mGal。
基于衛星跟蹤模式的優化選取、關鍵載荷的優化組閤、軌道參數的優化設計、倣真模擬的先期啟動和反縯方法的優化改進,開展瞭我國將來CSGM(China’s Satellite Gravity Mission)衛星重力測量計劃實施的研究論證。由于衛星跟蹤衛星高低/低低(SST-HL/LL)模式對地毬中長波重力場的探測精度較高、技術要求相對較低,而且可藉鑒噹前GRACE衛星的成功經驗,因此建議將來CSGM衛星重力測量計劃採用SST-HL/LL模式;建議開展激光榦涉星間測距儀、複閤GPS接收機、非保守力補償繫統、衛星體和加速度計質心調節裝置等關鍵載荷的先期研製;建議將來CSGM衛星的軌道高度(300~400km)和星間距離(100±50km)選擇在已有重力衛星的測量盲區;建議將倣真技術應用于CSGM衛星的方案論證、繫統設計、部件研製、產品檢驗、空中使用、故障分析等研髮和運行的全過程;對比分析瞭衛星軌道攝動法、動力學法、能量守恆法和加速度法的優缺點,建議尋求新型、高精度、高效率和全頻段的衛星重力反縯方法;提齣將來CSGM衛星重力測量計劃的預期科學目標:在300階處,纍計大地水準麵精度和纍計重力異常精度分彆為1~5 cm和1~5 mGal。
기우위성근종모식적우화선취、관건재하적우화조합、궤도삼수적우화설계、방진모의적선기계동화반연방법적우화개진,개전료아국장래CSGM(China’s Satellite Gravity Mission)위성중력측량계화실시적연구론증。유우위성근종위성고저/저저(SST-HL/LL)모식대지구중장파중력장적탐측정도교고、기술요구상대교저,이차가차감당전GRACE위성적성공경험,인차건의장래CSGM위성중력측량계화채용SST-HL/LL모식;건의개전격광간섭성간측거의、복합GPS접수궤、비보수력보상계통、위성체화가속도계질심조절장치등관건재하적선기연제;건의장래CSGM위성적궤도고도(300~400km)화성간거리(100±50km)선택재이유중력위성적측량맹구;건의장방진기술응용우CSGM위성적방안론증、계통설계、부건연제、산품검험、공중사용、고장분석등연발화운행적전과정;대비분석료위성궤도섭동법、동역학법、능량수항법화가속도법적우결점,건의심구신형、고정도、고효솔화전빈단적위성중력반연방법;제출장래CSGM위성중력측량계화적예기과학목표:재300계처,루계대지수준면정도화루계중력이상정도분별위1~5 cm화1~5 mGal。
The research demonstrations on the implementation of the future CSGMsatellite gravity mission in China were carried out,based on the preferable selection of satellite tracking modes,the optimal combination of key payloads,the preferred design of orbital parameters,the beforehand execution of simulated studies,and the optimum improvement of gravity recovery methods.Firstly,the Satellite-to-Satellite Tracking in the High-Low/Low-Low mode (SST-HL/LL)was used in the future CSGM satellite gravity mission due to the high-accuracy measurement of the Earth's gravitational field,the lower technical requirements and the successful experiences of the current twin GRACE satellites.Secondly,the space-borne instruments consisting of the interferometric laser intersatellite ranging system,the compound GPS receiver,the drag-free system,the center of mass trim assembly,etc.were developed in advance.Thirdly,the orbital altitude of 300~400 km and the intersatellite range of 100 ± 50 km were designed in the unmeasurable area of the existing gravity satellites.Fourthly,the simulation techniques were applied to the holistic processes of the development and operation for CSGM,including scheme demonstration,system design,parts development,production test, practical application and malfunction analysis.Fifthly,the advantages and disadvantages of the satellite orbital perturbation,dynamic,energy conservation and semi-analytic methods were contrastively analyzed,and the new-type,high-precision,high-efficiency and full-frequency satellite gravity recovery methods were investigated.Finally,the expected scientific objectives of the future CSGM satellite gravity mission showed that the cumulative geoid height error is 1 ~5 cm and the cumulative gravity anomaly error is 1 ~5 mGal at degree 300.