工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2014年
4期
601-610
,共10页
变系数微分方程%有限差分格式%收敛性和唯一性%总体截断误差
變繫數微分方程%有限差分格式%收斂性和唯一性%總體截斷誤差
변계수미분방정%유한차분격식%수렴성화유일성%총체절단오차
differential equations with variable coefficients%finite difference scheme%conver-gence and uniqueness%total truncation error
本文首先对一类八阶变系数微分方程建立了有限差分格式,并将该格式表示成矩阵的形式。然后,利用矩阵特征值和范数的理论,证明该格式解的收敛性和唯一性。借助数值算例说明该格式既有效、又便于模拟。另外,文中所用方法还能用于应用中的某些非线性微分方程问题的研究。
本文首先對一類八階變繫數微分方程建立瞭有限差分格式,併將該格式錶示成矩陣的形式。然後,利用矩陣特徵值和範數的理論,證明該格式解的收斂性和唯一性。藉助數值算例說明該格式既有效、又便于模擬。另外,文中所用方法還能用于應用中的某些非線性微分方程問題的研究。
본문수선대일류팔계변계수미분방정건립료유한차분격식,병장해격식표시성구진적형식。연후,이용구진특정치화범수적이론,증명해격식해적수렴성화유일성。차조수치산례설명해격식기유효、우편우모의。령외,문중소용방법환능용우응용중적모사비선성미분방정문제적연구。
In this article, a finite difference scheme for a class of eighth-order dif ferential equations with variable coefficients is established. The scheme is rewritten in a matrix form. The convergence and uniqueness of the solution to the scheme are proved by means of the matrix eigenvalue and norm theory. A numerical example shows that the method is very effective and simple to implement. In addition, the method can be applied to the study of some nonlinear differential equations arising in app-lications.