井冈山大学学报(自然科学版)
井岡山大學學報(自然科學版)
정강산대학학보(자연과학판)
JOURNAL OF JINGGANGSHAN UNIVERSITY(SCIENCE AND TECHNOLOGY)
2014年
5期
18-21
,共4页
Lévy-Feller扩散方程%空间分数阶导数%稳定性%收敛性
Lévy-Feller擴散方程%空間分數階導數%穩定性%收斂性
Lévy-Feller확산방정%공간분수계도수%은정성%수렴성
Lévy-Feller diffusion equation%space fractional derivative%stability%convergence
考虑了一类含有Riesz-Feller位势的两边空间分数阶Lévy-Feller扩散方程的差分问题。利用分数阶微分算子的等价性,提出了一种加权有限差分解法,并证明了所提出的差分格式是稳定和收敛的。最后通过一个数值例子说明了所提出的差分格式是有效和可靠的。
攷慮瞭一類含有Riesz-Feller位勢的兩邊空間分數階Lévy-Feller擴散方程的差分問題。利用分數階微分算子的等價性,提齣瞭一種加權有限差分解法,併證明瞭所提齣的差分格式是穩定和收斂的。最後通過一箇數值例子說明瞭所提齣的差分格式是有效和可靠的。
고필료일류함유Riesz-Feller위세적량변공간분수계Lévy-Feller확산방정적차분문제。이용분수계미분산자적등개성,제출료일충가권유한차분해법,병증명료소제출적차분격식시은정화수렴적。최후통과일개수치례자설명료소제출적차분격식시유효화가고적。
A finite difference problem for two-sided space fractional Lévy-Feller diffusion equation with Riesz-Feller potential is considered. By using the equivalent of fractional order differential operators, a weighted finite difference scheme for scattering the above diffusion equation is proposed. The stability and convergence of the scheme were analyzed. Finally, a numerical example was provided to demonstrate the validity and applicability of the difference scheme.