软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2014年
9期
2180-2186
,共7页
王瀚%刘重晋%付翔%封举富
王瀚%劉重晉%付翔%封舉富
왕한%류중진%부상%봉거부
掌纹识别%细节点质量%Gabor卷积%复数滤波%AdaBoost算法
掌紋識彆%細節點質量%Gabor捲積%複數濾波%AdaBoost算法
장문식별%세절점질량%Gabor권적%복수려파%AdaBoost산법
palmprint recognition%minutiae quality%Gabor convolution%complex filtering%AdaBoost algorithm
细节点在高分辨率掌纹匹配中扮演了重要角色,然而掌纹图像受到主线、褶皱线等的影响,提取出的细节点质量参差不齐。所以,对细节点进行质量评价并去除伪细节点,成为一个研究课题。提出了一种基于学习的高分辨率掌纹细节点质量评价方法。首先使用了基于图像的 Gabor 卷积响应和复数滤波响应等的一系列特征,用来对细节点局部进行冗余描述;然后,把每个特征作为弱分类器,用 AdaBoost 算法进行多层训练,挑选出对真伪细节点判别效果最理想的特征;最后,把弱分类器加权线性组合的响应分数作为细节点质量的得分,筛选出得分在阈值以上的细节点作为真细节点。该方法的实验结果与基于傅里叶变换的方法相比,能够更好地区分真伪细节点,对细节点的质量做出了更好的评价。
細節點在高分辨率掌紋匹配中扮縯瞭重要角色,然而掌紋圖像受到主線、褶皺線等的影響,提取齣的細節點質量參差不齊。所以,對細節點進行質量評價併去除偽細節點,成為一箇研究課題。提齣瞭一種基于學習的高分辨率掌紋細節點質量評價方法。首先使用瞭基于圖像的 Gabor 捲積響應和複數濾波響應等的一繫列特徵,用來對細節點跼部進行冗餘描述;然後,把每箇特徵作為弱分類器,用 AdaBoost 算法進行多層訓練,挑選齣對真偽細節點判彆效果最理想的特徵;最後,把弱分類器加權線性組閤的響應分數作為細節點質量的得分,篩選齣得分在閾值以上的細節點作為真細節點。該方法的實驗結果與基于傅裏葉變換的方法相比,能夠更好地區分真偽細節點,對細節點的質量做齣瞭更好的評價。
세절점재고분변솔장문필배중분연료중요각색,연이장문도상수도주선、습추선등적영향,제취출적세절점질량삼차불제。소이,대세절점진행질량평개병거제위세절점,성위일개연구과제。제출료일충기우학습적고분변솔장문세절점질량평개방법。수선사용료기우도상적 Gabor 권적향응화복수려파향응등적일계렬특정,용래대세절점국부진행용여묘술;연후,파매개특정작위약분류기,용 AdaBoost 산법진행다층훈련,도선출대진위세절점판별효과최이상적특정;최후,파약분류기가권선성조합적향응분수작위세절점질량적득분,사선출득분재역치이상적세절점작위진세절점。해방법적실험결과여기우부리협변환적방법상비,능구경호지구분진위세절점,대세절점적질량주출료경호적평개。
While minutiae is important for high-resolution palmprint matching, the quality of minutiae is affected by principal lines, creases and other noises, and therefore it is necessary to estimate the quality of minutiae and to exclude poor minutiae. In this paper, a minutiae quality estimation algorithm based on learning for high-resolution palmprint is proposed. First, a series of features obtained by applying Gabor convolution, complex filtering, etc., are used to describe the local area of minutiae redundancy. Then, with each feature as a weak classifier, AdaBoost algorithm is applied in multi-layered training to identify the best features for discriminating minutiae. Finally, the response of weighted linear combination of weak classifiers is used as minutiae quality score, and minutiae with score above the threshold is selected as true minutiae. Comparing with the method based on Fourier transform response, the presented method is superior at distinguishing true from false minutiae, and provides better evaluation of minutiae quality.