软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2014年
9期
2102-2118
,共17页
李照奎%丁立新%何进荣%胡庆辉
李照奎%丁立新%何進榮%鬍慶輝
리조규%정립신%하진영%호경휘
图像分解%多方向操作%欧拉映射%人脸识别
圖像分解%多方嚮操作%歐拉映射%人臉識彆
도상분해%다방향조작%구랍영사%인검식별
image decomposition%multiple orientations operator%Euler mapping%face recognition
提出一种基于图像分解的人脸特征表示方法(FRID),首先通过多方向操作,把一幅图像分解成一系列方向子图像;然后,通过欧拉映射操作,把每幅方向子图像分解成实部和虚部图像,针对每幅实部和虚部图像,分别划分出多个不重叠的局部图像块,通过统计图像块上不同数值的个数生成相应的实部和虚部直方图,一幅图像的所有实部和虚部直方图被串联成一个超级特征向量;最后,利用线性判别分析方法对超级特征向量进行维数约简,以获得每幅图像的低维表示。实验显示该方法在多个人脸数据库上获得了优于时新算法的识别结果,并且表现得更为稳定。
提齣一種基于圖像分解的人臉特徵錶示方法(FRID),首先通過多方嚮操作,把一幅圖像分解成一繫列方嚮子圖像;然後,通過歐拉映射操作,把每幅方嚮子圖像分解成實部和虛部圖像,針對每幅實部和虛部圖像,分彆劃分齣多箇不重疊的跼部圖像塊,通過統計圖像塊上不同數值的箇數生成相應的實部和虛部直方圖,一幅圖像的所有實部和虛部直方圖被串聯成一箇超級特徵嚮量;最後,利用線性判彆分析方法對超級特徵嚮量進行維數約簡,以穫得每幅圖像的低維錶示。實驗顯示該方法在多箇人臉數據庫上穫得瞭優于時新算法的識彆結果,併且錶現得更為穩定。
제출일충기우도상분해적인검특정표시방법(FRID),수선통과다방향조작,파일폭도상분해성일계렬방향자도상;연후,통과구랍영사조작,파매폭방향자도상분해성실부화허부도상,침대매폭실부화허부도상,분별화분출다개불중첩적국부도상괴,통과통계도상괴상불동수치적개수생성상응적실부화허부직방도,일폭도상적소유실부화허부직방도피천련성일개초급특정향량;최후,이용선성판별분석방법대초급특정향량진행유수약간,이획득매폭도상적저유표시。실험현시해방법재다개인검수거고상획득료우우시신산법적식별결과,병차표현득경위은정。
This paper presents a face feature representation method based on image decomposition (FRID). FRID first decomposes an image into a series of orientation sub-images by executing multiple orientations operator. Then, each orientation sub-image is decomposed into a real part image and an imaginary part image by applying Euler mapping operator. For each real and imaginary part image, FRID divides them into multiple non-overlapping local blocks. The real and imaginary part histograms are calculated by accumulating the number of different values of image blocks respectively. All the real and imaginary part histograms of an image are concatenated into a super-vector. Finally, the dimensionality of the super-vector is reduced by linear discriminant analysis to yield a low-dimensional, compact, and discriminative representation. Experimental results show that FRID achieves better results in comparison with state-of-the-art methods, and is the most stable method.