软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2014年
9期
2026-2036
,共11页
李嘉菲%周斌%刘大有%胡亮%王峰
李嘉菲%週斌%劉大有%鬍亮%王峰
리가비%주빈%류대유%호량%왕봉
证据理论%聚类%信息融合%海量信息%状态评价
證據理論%聚類%信息融閤%海量信息%狀態評價
증거이론%취류%신식융합%해량신식%상태평개
evidence theory%clustering%information fusion%massive information%status evaluation
针对证据理论无法有效处理海量信息融合的不足,提出一种结合聚类和凸函数证据理论的海量信息融合方法,旨在解决状态评价等普遍而重要的应用问题。该方法首先基于聚类算法 BIRCH 对采集的海量信息进行预处理,形成多个簇;然后,针对状态评估类问题所用数据大多为数值数据和序数数据这一特点,计算每个簇的质心,并将其作为该簇的代表信息,基于广义三角模糊隶属函数对每个质心信息进行基本概率指派形成证据;最后,基于凸函数证据理论完成各证据的组合,从而完成了海量信息的融合。仿真实验结果表明:该方法既高效又合理地融合了海量信息,为海量信息融合技术的发展提供了一条探索途径。
針對證據理論無法有效處理海量信息融閤的不足,提齣一種結閤聚類和凸函數證據理論的海量信息融閤方法,旨在解決狀態評價等普遍而重要的應用問題。該方法首先基于聚類算法 BIRCH 對採集的海量信息進行預處理,形成多箇簇;然後,針對狀態評估類問題所用數據大多為數值數據和序數數據這一特點,計算每箇簇的質心,併將其作為該簇的代錶信息,基于廣義三角模糊隸屬函數對每箇質心信息進行基本概率指派形成證據;最後,基于凸函數證據理論完成各證據的組閤,從而完成瞭海量信息的融閤。倣真實驗結果錶明:該方法既高效又閤理地融閤瞭海量信息,為海量信息融閤技術的髮展提供瞭一條探索途徑。
침대증거이론무법유효처리해량신식융합적불족,제출일충결합취류화철함수증거이론적해량신식융합방법,지재해결상태평개등보편이중요적응용문제。해방법수선기우취류산법 BIRCH 대채집적해량신식진행예처리,형성다개족;연후,침대상태평고류문제소용수거대다위수치수거화서수수거저일특점,계산매개족적질심,병장기작위해족적대표신식,기우엄의삼각모호대속함수대매개질심신식진행기본개솔지파형성증거;최후,기우철함수증거이론완성각증거적조합,종이완성료해량신식적융합。방진실험결과표명:해방법기고효우합리지융합료해량신식,위해량신식융합기술적발전제공료일조탐색도경。
To solve the problem that the evidence theory can’t efficiently deal with the fusion of massive information, a new method combining clustering and the convex evidence theory is put forward. The method aims to solve the common and important application problems of the status evaluation. First, the famous clustering algorithm BIRCH is performed to pre-process the data, generating multiple clusters. Second, the centroid of each cluster is calculated as the representation of the cluster pertaining to the fact that most data used for status evaluation have numeric attribute or ordinal attribute. Then, to form the evidence provided by the information in each cluster, the centroid information is given a basic probability assignment value based on the generalized triangular fuzzy membership function. Finally, evidences are combined according to the combination rule of the convex evidence theory. As a result, the massive information fusion is achieved. The results of simulation experiment show that the presented method can efficiently and reasonably perform the massive information fusion, providing a new way to improve the massive information fusion techniques.