粮食与油脂
糧食與油脂
양식여유지
CEREALS & OILS
2014年
9期
49-51
,共3页
花生%含油量%索氏抽提%近红外光谱技术
花生%含油量%索氏抽提%近紅外光譜技術
화생%함유량%색씨추제%근홍외광보기술
peanut%oil content%soxhlet extraction%NIRS
对69份花生种子样品进行近红外光谱扫描,结合索氏抽提法测定的花生种子含油量的化学值,通过多种预处理方法和回归方法建立了较精准的花生种子含油量的近红外测定模型。结果显示:经过SNV+Detrend光学处理和“2,4,4,1”数学处理的预处理以及改进偏最小二乘法(MPLS)的回归处理所建模型的效果最好,其定标相关系数(RSQ)和定标标准误差(SEC)分别为0.9787和0.2187;交叉检验相关系数(1-VR)和交叉检验标准误差(SECV)分别为0.9550和0.3201。14份验证样品的预测值和化学法测定值的相关系数(R2)为0.9354,说明所建模型可以快速准确地预测花生种子的含油量。
對69份花生種子樣品進行近紅外光譜掃描,結閤索氏抽提法測定的花生種子含油量的化學值,通過多種預處理方法和迴歸方法建立瞭較精準的花生種子含油量的近紅外測定模型。結果顯示:經過SNV+Detrend光學處理和“2,4,4,1”數學處理的預處理以及改進偏最小二乘法(MPLS)的迴歸處理所建模型的效果最好,其定標相關繫數(RSQ)和定標標準誤差(SEC)分彆為0.9787和0.2187;交扠檢驗相關繫數(1-VR)和交扠檢驗標準誤差(SECV)分彆為0.9550和0.3201。14份驗證樣品的預測值和化學法測定值的相關繫數(R2)為0.9354,說明所建模型可以快速準確地預測花生種子的含油量。
대69빈화생충자양품진행근홍외광보소묘,결합색씨추제법측정적화생충자함유량적화학치,통과다충예처리방법화회귀방법건립료교정준적화생충자함유량적근홍외측정모형。결과현시:경과SNV+Detrend광학처리화“2,4,4,1”수학처리적예처리이급개진편최소이승법(MPLS)적회귀처리소건모형적효과최호,기정표상관계수(RSQ)화정표표준오차(SEC)분별위0.9787화0.2187;교차검험상관계수(1-VR)화교차검험표준오차(SECV)분별위0.9550화0.3201。14빈험증양품적예측치화화학법측정치적상관계수(R2)위0.9354,설명소건모형가이쾌속준학지예측화생충자적함유량。
Near-infrared spectroscopy of peanut seed was used to determine its oil content,which was compared with the oil content data of 69 samples of peanut seeds obtained by Soxhlet extraction method. Combined with the corresponding near infrared reflectance spectroscopy,the accurate model was well established with different pretreatment methods and regression analysis. The results demonstrated that the correlation coefficients of calibration(RSQ)and the root mean square errors of calibration(SEC) through SNV、Detrend and 2,4,4,1 filter spectral pretreatment methods and MPLS regression analysis were 0.978 7 and 0.218 7 respectively. The correlation coefficients of cross-validation(1-VR)and the root mean square errors of cross-validation(SECV)were 0.955 0 and 0.320 1 respectively. The correlation coefficient(R2)between NIRS value and chemical value of 14 samples was 0.935 4,which indicated that the model could be used to predict the oil content of peanut seeds fast and exactly.