海洋学报(中文版)
海洋學報(中文版)
해양학보(중문판)
ACTA OCEANOLOGICA SINICA
2014年
9期
18-29
,共12页
毛科峰%萧中乐%王亮%季卫海
毛科峰%蕭中樂%王亮%季衛海
모과봉%소중악%왕량%계위해
近岸海浪%数值模式%统计模型%耦合%卡尔曼滤波
近岸海浪%數值模式%統計模型%耦閤%卡爾曼濾波
근안해랑%수치모식%통계모형%우합%잡이만려파
coastal wave%numerical model%statistical method%coupled scheme%Kalman filtering method
针对数值模式和统计模型预报近岸海浪存在的局限性,构建了数值模式和统计模型相耦合的近岸海浪预报框架,在模式计算格点和近岸预报目标点之间定义一个海浪能量密度谱传递系数,通过经验正交函数分解和卡尔曼滤波方法建立传递系数的统计预报模型并与数值模式进行耦合。经过对近岸波浪观测站1 a 的预报试验表明:该方法能够提高近岸海浪有效波高预报精度,有效波高的均方根误差降低了约0.16 m,平均相对误差降低约9%。进一步试验和分析发现,该方法的预报有效时间小于24 h,将海浪能量密度谱经过分解后得到的基本模态反映了近岸波侯的主要特征,海浪能量密度谱传递系数的变化体现了波侯的季节变化特点。
針對數值模式和統計模型預報近岸海浪存在的跼限性,構建瞭數值模式和統計模型相耦閤的近岸海浪預報框架,在模式計算格點和近岸預報目標點之間定義一箇海浪能量密度譜傳遞繫數,通過經驗正交函數分解和卡爾曼濾波方法建立傳遞繫數的統計預報模型併與數值模式進行耦閤。經過對近岸波浪觀測站1 a 的預報試驗錶明:該方法能夠提高近岸海浪有效波高預報精度,有效波高的均方根誤差降低瞭約0.16 m,平均相對誤差降低約9%。進一步試驗和分析髮現,該方法的預報有效時間小于24 h,將海浪能量密度譜經過分解後得到的基本模態反映瞭近岸波侯的主要特徵,海浪能量密度譜傳遞繫數的變化體現瞭波侯的季節變化特點。
침대수치모식화통계모형예보근안해랑존재적국한성,구건료수치모식화통계모형상우합적근안해랑예보광가,재모식계산격점화근안예보목표점지간정의일개해랑능량밀도보전체계수,통과경험정교함수분해화잡이만려파방법건립전체계수적통계예보모형병여수치모식진행우합。경과대근안파랑관측참1 a 적예보시험표명:해방법능구제고근안해랑유효파고예보정도,유효파고적균방근오차강저료약0.16 m,평균상대오차강저약9%。진일보시험화분석발현,해방법적예보유효시간소우24 h,장해랑능량밀도보경과분해후득도적기본모태반영료근안파후적주요특정,해랑능량밀도보전체계수적변화체현료파후적계절변화특점。
The coupled coastal wave prediction scheme ,which is a combination of a multi-scale numerical model and a statistical method,is proposed in order to avoid the limitations of one single scheme.By ocean wave model,the wave energy density spectrum of the computational grid in the coastal model is forecasted.We have defined a trans-fer coefficient matrix for thewave energy density spectrum between the computational grid and the coastal forecas-ting point.A statistical model for the prediction of this transfer coefficient is established using empirical orthogonal function (EOF)and Kalman filtering method.This statistical model is then coupled with the numerical model. The wave energy density spectrum of computational grid is optimized using the observed coastal buoy data.The coastal wave forecasting are validated by the observations of NAHA station for one year,indicating that this cou-pled method significantly improved the prediction power compared with the numerical model on its own.The root-meansquare error of the significant wave height reduces about 0.16mand the average relative error is reduced by a-bout 9%.It is also found that the forecasting accuracy of this method is limited within 24 hours;the principal components decomposed from the wave energy density spectrum reflect the main characteristics of local wave cli-mate;and the change transfer coefficient of the spectrum reflects the seasonal variation of the wave climate.