光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
9期
2519-2522
,共4页
程术希%孔汶汶%张初%刘飞%何勇
程術希%孔汶汶%張初%劉飛%何勇
정술희%공문문%장초%류비%하용
高光谱%Ada-Boost算法%极限学习机%随机森林%支持向量机
高光譜%Ada-Boost算法%極限學習機%隨機森林%支持嚮量機
고광보%Ada-Boost산법%겁한학습궤%수궤삼림%지지향량궤
Hyperspectal imaging%Ada-boost algorithm%Extreme learning machine%Random forest%Support vector machine*Corresponding author
提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15 pixel ×15 pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost算法、极限学习机(extreme learning machine , ELM )、随机森林(random forest ,RF)和支持向量机(support vector machine ,SVM )四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF ,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-EL M模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。
提齣瞭基于高光譜信息的大白菜種子品種分類識彆方法。利用近紅外高光譜圖像採集繫統採集瞭八種共239箇大白菜種子樣本;提取15 pixel ×15 pixel感興趣區域平均光譜反射率信息作為樣本信息;採用多元散射校正預處理方法對光譜進行消譟;驗證瞭Ada-Boost算法、極限學習機(extreme learning machine , ELM )、隨機森林(random forest ,RF)和支持嚮量機(support vector machine ,SVM )四種分類算法的分類判彆效果。為瞭簡化輸入變量,通過載荷繫數分析選取瞭10箇大白菜種子品種分類判彆的特徵波長。實驗結果錶明,四種分類算法基于全波段的分類識彆對81箇預測樣本的正確區分率均超過90%,最優的分類判彆模型為ELM和RF ,識彆正確率達到瞭100%;以10箇特徵波長的分類判彆精度略有下降,但輸入變量大幅減少,提高瞭信息處理效率,其中最優分類判彆模型為EW-EL M模型,判彆正確率為100%,因此以載荷繫數選取的特徵波長是有效的。利用高光譜結閤機器學習對大白菜種子品種進行快速、無損分類識彆是可行的,為大白菜種子批量化在線檢測提供瞭一種新的方法。
제출료기우고광보신식적대백채충자품충분류식별방법。이용근홍외고광보도상채집계통채집료팔충공239개대백채충자양본;제취15 pixel ×15 pixel감흥취구역평균광보반사솔신식작위양본신식;채용다원산사교정예처리방법대광보진행소조;험증료Ada-Boost산법、겁한학습궤(extreme learning machine , ELM )、수궤삼림(random forest ,RF)화지지향량궤(support vector machine ,SVM )사충분류산법적분류판별효과。위료간화수입변량,통과재하계수분석선취료10개대백채충자품충분류판별적특정파장。실험결과표명,사충분류산법기우전파단적분류식별대81개예측양본적정학구분솔균초과90%,최우적분류판별모형위ELM화RF ,식별정학솔체도료100%;이10개특정파장적분류판별정도략유하강,단수입변량대폭감소,제고료신식처리효솔,기중최우분류판별모형위EW-EL M모형,판별정학솔위100%,인차이재하계수선취적특정파장시유효적。이용고광보결합궤기학습대대백채충자품충진행쾌속、무손분류식별시가행적,위대백채충자비양화재선검측제공료일충신적방법。
The variety of Chinese cabbage seeds were recognized using hyperspectral imaging with 256 bands from 874 to 1 734 nm in the present paper .A total of 239 Chinese cabbage seed samples including 8 varieties were acquired by hyperspectral image system ,158 for calibration and the rest 81 for validation .A region of 15 pixel × 15 pixel was selected as region of interest (ROI) and the average spectral information of ROI was obtained as sample spectral information .Multiplicative scatter correction was selected as pretreatment method to reduce the noise of spectrum .The performance of four classification algorithms including Ada-boost algorithm ,extreme learning machine (ELM ) ,random forest (RF) and support vector machine (SVM ) were exam-ined in this study .In order to simplify the input variables ,10 effective wavelengths (EMS) including 1 002 ,1 005 ,1 015 , 1 019 ,1 022 ,1 103 ,1 106 ,1 167 ,1 237 and 1 409 nm were selected by analysis of variable load distribution in PLS model .The reflectance of effective wavelengths was taken as the input variables to build effective wavelengths based models .The results in-dicated that the classification accuracy of the four models based on full-spectral were over 90% ,the optimal models were extreme learning machine and random forest ,and the classification accuracy achieved 100% .The classification accuracy of effective wave-lengths based models declined slightly but the input variables compressed greatly , the efficiency of data processing was im-proved ,and the classification accuracy of EW-ELM model achieved 100% .ELM performed well both in full-spectral model and in effective wavelength based model in this study ,it was proven to be a useful tool for spectral analysis .So rapid and nondestruc-tive recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning is feasible ,and it provides a new method for on line batch variety recognition of Chinese cabbage seeds .