光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
9期
2444-2448
,共5页
张晓蕾%张洁%范拓%任文杰%赖春红
張曉蕾%張潔%範拓%任文傑%賴春紅
장효뢰%장길%범탁%임문걸%뢰춘홍
表面增强拉曼散射%碳纳米管阵列%银纳米粒子%磁控溅射
錶麵增彊拉曼散射%碳納米管陣列%銀納米粒子%磁控濺射
표면증강랍만산사%탄납미관진렬%은납미입자%자공천사
Surface-enhanced Raman scattering (SERS)%Carbon nanotube arrays%Ag nanoparticles%Magnetron sputtering
为了使表面增强拉曼散射(SERS)基底的三维聚焦体积内包含更多的“热点”,能吸附更多探针分子和金属纳米颗粒,以便获得更强的拉曼光谱信号,提出了银纳米粒子修饰垂直排列的碳纳米管阵列三维复合结构作为SERS基底,并对其进行了实验研究。利用化学气相沉积(CVD)方法制备了垂直排列的碳纳米管阵列;采用磁控溅射镀膜方法先在碳纳米管阵列上形成一层银膜,再通过设置不同的高温退火温度,使不同粒径的银纳米粒子沉积在垂直有序排列碳纳米管阵列的表面和外壁。SEM结果表明:在有序碳纳米管阵列的表面和外壁都均匀地负载了大量银纳米粒子,并且银纳米颗粒的粒径、形貌及颗粒间的间距随退火温度的不同而不同。采用罗丹明6G (R6G )分子作为探针分子,拉曼实验结果表明:R6G浓度越高,拉曼强度越强,但是R6G浓度的增加与拉曼强度增强并不呈线性变化;退火温度为450℃,银纳米颗粒平均粒径在100~120 nm左右,退火温度为400℃,银纳米颗粒平均粒径在70 nm左右,退火温度为450℃的拉曼信号强度优于退火温度400和350℃。
為瞭使錶麵增彊拉曼散射(SERS)基底的三維聚焦體積內包含更多的“熱點”,能吸附更多探針分子和金屬納米顆粒,以便穫得更彊的拉曼光譜信號,提齣瞭銀納米粒子脩飾垂直排列的碳納米管陣列三維複閤結構作為SERS基底,併對其進行瞭實驗研究。利用化學氣相沉積(CVD)方法製備瞭垂直排列的碳納米管陣列;採用磁控濺射鍍膜方法先在碳納米管陣列上形成一層銀膜,再通過設置不同的高溫退火溫度,使不同粒徑的銀納米粒子沉積在垂直有序排列碳納米管陣列的錶麵和外壁。SEM結果錶明:在有序碳納米管陣列的錶麵和外壁都均勻地負載瞭大量銀納米粒子,併且銀納米顆粒的粒徑、形貌及顆粒間的間距隨退火溫度的不同而不同。採用囉丹明6G (R6G )分子作為探針分子,拉曼實驗結果錶明:R6G濃度越高,拉曼彊度越彊,但是R6G濃度的增加與拉曼彊度增彊併不呈線性變化;退火溫度為450℃,銀納米顆粒平均粒徑在100~120 nm左右,退火溫度為400℃,銀納米顆粒平均粒徑在70 nm左右,退火溫度為450℃的拉曼信號彊度優于退火溫度400和350℃。
위료사표면증강랍만산사(SERS)기저적삼유취초체적내포함경다적“열점”,능흡부경다탐침분자화금속납미과립,이편획득경강적랍만광보신호,제출료은납미입자수식수직배렬적탄납미관진렬삼유복합결구작위SERS기저,병대기진행료실험연구。이용화학기상침적(CVD)방법제비료수직배렬적탄납미관진렬;채용자공천사도막방법선재탄납미관진렬상형성일층은막,재통과설치불동적고온퇴화온도,사불동립경적은납미입자침적재수직유서배렬탄납미관진렬적표면화외벽。SEM결과표명:재유서탄납미관진렬적표면화외벽도균균지부재료대량은납미입자,병차은납미과립적립경、형모급과립간적간거수퇴화온도적불동이불동。채용라단명6G (R6G )분자작위탐침분자,랍만실험결과표명:R6G농도월고,랍만강도월강,단시R6G농도적증가여랍만강도증강병불정선성변화;퇴화온도위450℃,은납미과립평균립경재100~120 nm좌우,퇴화온도위400℃,은납미과립평균립경재70 nm좌우,퇴화온도위450℃적랍만신호강도우우퇴화온도400화350℃。
In order to make surface-enhanced Raman scattering (SERS) substrates contained more “hot spots”in a three-dimen-sional (3D) focal volume ,and can be adsorbed more probe molecules and metal nanoparticles ,to obtain stronger Raman spectral signal ,a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman en-hancement is presented .The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD) .A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering .The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs .The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs , as the annealing temperature is different ,pitch size ,morphology and space between the silver nanoparticles is vary .Rhodamine 6G is served as the probe analyte .Raman spectrum measurement indicates that :the higher the concentration of R6G ,the stron-ger the Raman intensity ,but R6G concentration increase with the enhanced Raman intensity varies nonlinearly ;when annealing temperature is 450 ℃ ,the average size of silver nanoparticles is about 100 to 120 nm ,while annealing temperature is 400 ℃ ,the average size is about 70 nm ,and the Raman intensity of 450 ℃ is superior to the annealing temperature that of 400 ℃ and 350℃.