分析化学
分析化學
분석화학
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
2014年
9期
1301-1306
,共6页
张新爱%申建忠%张帆%马海乐%韩恩%董晓娅
張新愛%申建忠%張帆%馬海樂%韓恩%董曉婭
장신애%신건충%장범%마해악%한은%동효아
微囊藻毒素%碳纳米管/纳米金复合膜%电化学免疫传感器
微囊藻毒素%碳納米管/納米金複閤膜%電化學免疫傳感器
미낭조독소%탄납미관/납미금복합막%전화학면역전감기
Microcystins%Carbon nanotubes/gold nanoparticles composite film%Electrochemical immunosensor
在玻碳电极表面修饰碳纳米管,并用多电位阶跃法在碳纳米管表面沉积纳米金制得碳纳米管/纳米金复合膜。通过纳米金和微囊藻毒素-(亮氨酸-精氨酸)抗体之间的吸附作用,将抗微囊藻单克隆抗体固定于电极表面,以牛血清白蛋白封闭非特异性吸附位点,研制了检测微囊藻毒素的电化学免疫传感器。利用微囊藻毒素与其抗体之间的特异性识别作用构建“三明治”夹心结构的免疫分析模式,以辣根过氧化物酶标记抗体为二抗,利用微分脉冲伏安法实现了对微囊藻毒素的检测。在优化条件下,此传感器的响应电流与微囊藻毒素浓度在0.50~12.0μg/L范围内呈良好的线性关系,检出限为0.30μg/L(S/N=3)。对实际水样进行了微囊藻毒素的加标回收实验,回收率在93.0%~108.5%之间,相对标准偏差为3.8%~5.0%。
在玻碳電極錶麵脩飾碳納米管,併用多電位階躍法在碳納米管錶麵沉積納米金製得碳納米管/納米金複閤膜。通過納米金和微囊藻毒素-(亮氨痠-精氨痠)抗體之間的吸附作用,將抗微囊藻單剋隆抗體固定于電極錶麵,以牛血清白蛋白封閉非特異性吸附位點,研製瞭檢測微囊藻毒素的電化學免疫傳感器。利用微囊藻毒素與其抗體之間的特異性識彆作用構建“三明治”夾心結構的免疫分析模式,以辣根過氧化物酶標記抗體為二抗,利用微分脈遲伏安法實現瞭對微囊藻毒素的檢測。在優化條件下,此傳感器的響應電流與微囊藻毒素濃度在0.50~12.0μg/L範圍內呈良好的線性關繫,檢齣限為0.30μg/L(S/N=3)。對實際水樣進行瞭微囊藻毒素的加標迴收實驗,迴收率在93.0%~108.5%之間,相對標準偏差為3.8%~5.0%。
재파탄전겁표면수식탄납미관,병용다전위계약법재탄납미관표면침적납미금제득탄납미관/납미금복합막。통과납미금화미낭조독소-(량안산-정안산)항체지간적흡부작용,장항미낭조단극륭항체고정우전겁표면,이우혈청백단백봉폐비특이성흡부위점,연제료검측미낭조독소적전화학면역전감기。이용미낭조독소여기항체지간적특이성식별작용구건“삼명치”협심결구적면역분석모식,이랄근과양화물매표기항체위이항,이용미분맥충복안법실현료대미낭조독소적검측。재우화조건하,차전감기적향응전류여미낭조독소농도재0.50~12.0μg/L범위내정량호적선성관계,검출한위0.30μg/L(S/N=3)。대실제수양진행료미낭조독소적가표회수실험,회수솔재93.0%~108.5%지간,상대표준편차위3.8%~5.0%。
Carbon nanotubes/Au nanoparticles ( CNT/AuNP ) composite film was fabricated on glassy carbon electrode ( GCE) by first dropping CNTs on the electrode surface and then electrodeposition of AuNPs by multi-potential step. The antibody of microcystin-( leucine-arginine ) ( anti-MCLR ) was immobilized on the modified electrode surface through adsorption on AuNPs. Subsequently, bovine serum albumin ( BSA) was used to block the non-specific adsorption to obtain the immunosensor for MCLR assay. The immunosensor could effectively capture MCLR by the specific immunoreaction between the electrode surface-confined antibody and MCLR, followed by the attachment of the anti-MCLR HRP-labeled to form a sandwich-type system. The analysis of MCLR was performed based on the catalytic reaction of HRP toward the oxidation of hydroquinone ( QH2 ) by H2 O2 . Under the optimal experimental conditions, the peak current response increased linearly with the concentration of MCLR in the range of 0 . 50-12 μg/L with a detection limit of 0. 30 μg/L (S/N=3). The developed immunosensor was used to determine MCLR in real water samples, and the recoveries of standard addition experiments were in the range of 93 . 0%-108 . 5%, with the relative standard deviation of 3 . 8%-5 . 0%.