计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2014年
11期
1997-2006
,共10页
李月龙%廖胜才%易东%武继刚%陈亚文
李月龍%廖勝纔%易東%武繼剛%陳亞文
리월룡%료성재%역동%무계강%진아문
模糊人脸鉴别%人脸独立组件%人脸识别%组件投票
模糊人臉鑒彆%人臉獨立組件%人臉識彆%組件投票
모호인검감별%인검독립조건%인검식별%조건투표
blur face identification%independent face component%face recognition%component voting
针对图像模糊会影响人脸图像识别精度的问题,首先指出了在摄取用于识别的人脸图像时加入模糊鉴别步骤的必要性,进而提出了基于独立面部组件进行模糊人脸图像鉴别的方法。由于进行模糊鉴别必须依赖图像中的高频细节信息,而人脸图像上绝大多数高频信息都集中在眼睛、眉毛、嘴巴等具体面部组件上,因此选择以这些面部组件为基本特征提取单位,以降低面颊、额头等主要包含低频平滑信息的面部其他区域对模糊鉴别精度的影响。该方法采用面部组件上的高频DC T系数为特征;随后为各组件构建独立的随机森林分类器,并分别判断每个面部组件其是否模糊;最后基于各组件的鉴别结果进行投票,得出最终模糊鉴别结果。在FRGC公开数据集上进行大量对比实验的结果表明,独立面部组件特征是有效的,并充分验证了文中方法的实际效果。
針對圖像模糊會影響人臉圖像識彆精度的問題,首先指齣瞭在攝取用于識彆的人臉圖像時加入模糊鑒彆步驟的必要性,進而提齣瞭基于獨立麵部組件進行模糊人臉圖像鑒彆的方法。由于進行模糊鑒彆必鬚依賴圖像中的高頻細節信息,而人臉圖像上絕大多數高頻信息都集中在眼睛、眉毛、嘴巴等具體麵部組件上,因此選擇以這些麵部組件為基本特徵提取單位,以降低麵頰、額頭等主要包含低頻平滑信息的麵部其他區域對模糊鑒彆精度的影響。該方法採用麵部組件上的高頻DC T繫數為特徵;隨後為各組件構建獨立的隨機森林分類器,併分彆判斷每箇麵部組件其是否模糊;最後基于各組件的鑒彆結果進行投票,得齣最終模糊鑒彆結果。在FRGC公開數據集上進行大量對比實驗的結果錶明,獨立麵部組件特徵是有效的,併充分驗證瞭文中方法的實際效果。
침대도상모호회영향인검도상식별정도적문제,수선지출료재섭취용우식별적인검도상시가입모호감별보취적필요성,진이제출료기우독립면부조건진행모호인검도상감별적방법。유우진행모호감별필수의뢰도상중적고빈세절신식,이인검도상상절대다수고빈신식도집중재안정、미모、취파등구체면부조건상,인차선택이저사면부조건위기본특정제취단위,이강저면협、액두등주요포함저빈평활신식적면부기타구역대모호감별정도적영향。해방법채용면부조건상적고빈DC T계수위특정;수후위각조건구건독립적수궤삼림분류기,병분별판단매개면부조건기시부모호;최후기우각조건적감별결과진행투표,득출최종모호감별결과。재FRGC공개수거집상진행대량대비실험적결과표명,독립면부조건특정시유효적,병충분험증료문중방법적실제효과。
To deal with the image blur problem during face recognition ,in this paper ,the necessity to add a blur identification step ahead of facial image acquiring for recognition is first discussed ,and then a components based blur identification approach is proposed .The most significant characteristics for blur identification reside in the high frequency informations of image ,and as to a specific facial image , those informations mainly distribute on face components such as eyes ,brow ,mouth ,and so on .T hus we explore to extract features from these face components to exclude the disturbance of other face parts such as cheek and forehead w hose dominant informations are contained in low frequency .Specifically , our algorithm relies on the high frequency DCT coefficients on face component as features ,then the Random Forest strategy is utilized as the component level identifier to blur ,and finally component voting in enrolled to determine the final decision .The effectiveness of the proposed component features and our independent components based blur face identification approach are demonstrated by tremendous experiments on the publicly available FRGC dataset .