计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2014年
11期
1938-1947
,共10页
舒振宇%王鹏飞%于欣%刘利刚
舒振宇%王鵬飛%于訢%劉利剛
서진우%왕붕비%우흔%류리강
三维模型分类%局部稀疏表示%k近邻%改进的形状直径函数%特征描述符
三維模型分類%跼部稀疏錶示%k近鄰%改進的形狀直徑函數%特徵描述符
삼유모형분류%국부희소표시%k근린%개진적형상직경함수%특정묘술부
3D models classification%local sparse representation%k-nearest neighbor%improved shape diameter function%feature descriptor
为了对未知分类信息的三维模型进行分类,提出三维模型分类识别算法。首先以改进的形状直径函数(shape diameter function ,SDF)特征描述符为基础对所有三维模型提取特征向量,并将未知分类信息的三维模型作为测试模型,在已知分类的三维模型数据库中找到与测试模型最相似的 k个模型;然后在这 k个模型中利用稀疏表示分类方法对测试模型进行识别;最后确定测试模型在三维模型数据库中的分类信息。实验结果表明,该算法简单且易于实现,具有较高的识别准确率及较强的鲁棒性。
為瞭對未知分類信息的三維模型進行分類,提齣三維模型分類識彆算法。首先以改進的形狀直徑函數(shape diameter function ,SDF)特徵描述符為基礎對所有三維模型提取特徵嚮量,併將未知分類信息的三維模型作為測試模型,在已知分類的三維模型數據庫中找到與測試模型最相似的 k箇模型;然後在這 k箇模型中利用稀疏錶示分類方法對測試模型進行識彆;最後確定測試模型在三維模型數據庫中的分類信息。實驗結果錶明,該算法簡單且易于實現,具有較高的識彆準確率及較彊的魯棒性。
위료대미지분류신식적삼유모형진행분류,제출삼유모형분류식별산법。수선이개진적형상직경함수(shape diameter function ,SDF)특정묘술부위기출대소유삼유모형제취특정향량,병장미지분류신식적삼유모형작위측시모형,재이지분류적삼유모형수거고중조도여측시모형최상사적 k개모형;연후재저 k개모형중이용희소표시분류방법대측시모형진행식별;최후학정측시모형재삼유모형수거고중적분류신식。실험결과표명,해산법간단차역우실현,구유교고적식별준학솔급교강적로봉성。
To classify 3D models whose classification information is unknown prior ,this paper proposes a recognition algorithm for 3D models .Firstly ,the algorithm extracts feature vectors for each 3D model based on an improved shape diameter function (SDF ) feature descriptor .Secondly ,each 3D model ,whose classification information is unknown ,is regarded as the test model .And then the algorithm finds k models ,which are similar with the test model ,in the 3D models database where each model's classification information is know n in advance .Finally the sparse representation classifier is applied to the test model and the k models to determine the classification information of the test model in the 3D models database . Experimental results show that the algorithm is simple and easy to implement .Besides ,the algorithm is highly accurate and robust .