温州大学学报(自然科学版)
溫州大學學報(自然科學版)
온주대학학보(자연과학판)
JOURNAL OF WENZHOU UNIVERSITY(NATURAL SCIENCES)
2014年
4期
1-7
,共7页
郑洪艳%罗勇%胡亦郑
鄭洪豔%囉勇%鬍亦鄭
정홍염%라용%호역정
数学模型%渐进稳定性%最优税收
數學模型%漸進穩定性%最優稅收
수학모형%점진은정성%최우세수
Mathematical Model%Asymptotic Stability%Optimal Taxation
运用微分方程理论,研究了一类非线性的红松种群征税模型,得到了该系统的平衡点,证明了该系统正平衡点的局部渐进稳定性和正平衡点的全局吸引域,利用 Pontryagin 最大值原理给出了最优征税策略。
運用微分方程理論,研究瞭一類非線性的紅鬆種群徵稅模型,得到瞭該繫統的平衡點,證明瞭該繫統正平衡點的跼部漸進穩定性和正平衡點的全跼吸引域,利用 Pontryagin 最大值原理給齣瞭最優徵稅策略。
운용미분방정이론,연구료일류비선성적홍송충군정세모형,득도료해계통적평형점,증명료해계통정평형점적국부점진은정성화정평형점적전국흡인역,이용 Pontryagin 최대치원리급출료최우정세책략。
This paper studies a class of nonlinear taxation model of pine nut, squirrel and saplings by means of the theory of differential equations. The existence of the positive equilibrium of the system is discussed through the research. Locally asymptotic stability of the system’s positive equilibrium is proved and the attractive domain of the positive equilibrium is obtained. The problem of optimal taxation strategy is settled by taking the advantage of Pontryagin’s maximal principle.