系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2014年
11期
2288-2294
,共7页
低密度奇偶校验码%加权比特翻转%附加偏移项%有限域几何
低密度奇偶校驗碼%加權比特翻轉%附加偏移項%有限域幾何
저밀도기우교험마%가권비특번전%부가편이항%유한역궤하
low density parity-check (LDPC)code%weighted bit flipping (WBF)%additive offset term%fi-nite geometry (FG)
大量仿真表明,基于幅度和的改进型加权比特翻转(modified sum of the magnitude based weighted bit flipping,MSMWBF)译码算法对于行重/列重较小的低密度奇偶校验(low density parity-check,LDPC)码而言,展现出巨大的性能优势,但对于行重/列重较大的基于有限域几何(finite-geometry,FG)的 LDPC 码,性能损失严重。首先对此现象进行理论分析。其次,引入附加的偏移项对 MSMWBF 算法的校验方程可靠度信息进行修正,提高了算法对行重/列重较大的 LDPC 码的译码性能。仿真结果表明,在加性高斯白噪声信道下,误比特率为10-5时,相比于 MSMWBF 算法,在适度增加实现复杂度的条件下,所提算法可获得约0.63 dB 的增益。
大量倣真錶明,基于幅度和的改進型加權比特翻轉(modified sum of the magnitude based weighted bit flipping,MSMWBF)譯碼算法對于行重/列重較小的低密度奇偶校驗(low density parity-check,LDPC)碼而言,展現齣巨大的性能優勢,但對于行重/列重較大的基于有限域幾何(finite-geometry,FG)的 LDPC 碼,性能損失嚴重。首先對此現象進行理論分析。其次,引入附加的偏移項對 MSMWBF 算法的校驗方程可靠度信息進行脩正,提高瞭算法對行重/列重較大的 LDPC 碼的譯碼性能。倣真結果錶明,在加性高斯白譟聲信道下,誤比特率為10-5時,相比于 MSMWBF 算法,在適度增加實現複雜度的條件下,所提算法可穫得約0.63 dB 的增益。
대량방진표명,기우폭도화적개진형가권비특번전(modified sum of the magnitude based weighted bit flipping,MSMWBF)역마산법대우행중/렬중교소적저밀도기우교험(low density parity-check,LDPC)마이언,전현출거대적성능우세,단대우행중/렬중교대적기우유한역궤하(finite-geometry,FG)적 LDPC 마,성능손실엄중。수선대차현상진행이론분석。기차,인입부가적편이항대 MSMWBF 산법적교험방정가고도신식진행수정,제고료산법대행중/렬중교대적 LDPC 마적역마성능。방진결과표명,재가성고사백조성신도하,오비특솔위10-5시,상비우 MSMWBF 산법,재괄도증가실현복잡도적조건하,소제산법가획득약0.63 dB 적증익。
Extensive simulations show that for some low density parity-check (LDPC)codes of low row/colum weight,the modified sum of the magnitude based weighted bit flipping (MSMWBF)decoding algorithm performs extraordinarily well.However,this dose not hold when it comes to large row/colum weight finite-ge-ometry LDPC codes,which is first theoretically analyzed.Secondly,improvement in performance is observed for large row/colum weight LDPC codes by considering an additive offset term for the parity-check-equation reliabi-lity of the above algorithm.Simulation results show that the performance of the improved scheme is better than that of the MSMWBF algorithm about 0.63 dB at bit-error rate of 10 -5 over the additive white Gaussian noise channel with only a modest increase in computational complexity.