计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2014年
9期
1127-1132
,共6页
流程雁阵%多目标%NSGA-II%TOPSIS
流程雁陣%多目標%NSGA-II%TOPSIS
류정안진%다목표%NSGA-II%TOPSIS
PGQ%multi-objective%NSGA-II%TOPSIS
流程雁阵(Process Goose Queue, PGQ)[1]为流程系统的分解协调优化提供了一个新的方法,然而,目前PGQ方法尚存在许多不足,如简单地将个体PGQ的状态跟踪处理为单目标优化问题,这与实际流程操作不符;而多级PGQ系统优化仍采用传统的数学规划方法,对模型要求苛刻且依赖于初值的选取。为此,论文提出了一个面向流程雁阵多目标跟踪的优化方法。首先对多级PGQ系统进行了结构优化,然后将NSGA-II用于多级PGQ系统中个体PGQ的多目标优化求解,得到Pareto解集;在此基础上,将逼近理想解排序法(TOPSIS)和扩展傅里叶幅值灵敏度分析法(EFAST)应用于个体PGQ的多目标决策,并从Pareto解集选取最优解在多级PGQ系统中逐级传递,实现流程系统的分解协调优化。仿真实例验证了方法的可行性和有效性。
流程雁陣(Process Goose Queue, PGQ)[1]為流程繫統的分解協調優化提供瞭一箇新的方法,然而,目前PGQ方法尚存在許多不足,如簡單地將箇體PGQ的狀態跟蹤處理為單目標優化問題,這與實際流程操作不符;而多級PGQ繫統優化仍採用傳統的數學規劃方法,對模型要求苛刻且依賴于初值的選取。為此,論文提齣瞭一箇麵嚮流程雁陣多目標跟蹤的優化方法。首先對多級PGQ繫統進行瞭結構優化,然後將NSGA-II用于多級PGQ繫統中箇體PGQ的多目標優化求解,得到Pareto解集;在此基礎上,將逼近理想解排序法(TOPSIS)和擴展傅裏葉幅值靈敏度分析法(EFAST)應用于箇體PGQ的多目標決策,併從Pareto解集選取最優解在多級PGQ繫統中逐級傳遞,實現流程繫統的分解協調優化。倣真實例驗證瞭方法的可行性和有效性。
류정안진(Process Goose Queue, PGQ)[1]위류정계통적분해협조우화제공료일개신적방법,연이,목전PGQ방법상존재허다불족,여간단지장개체PGQ적상태근종처리위단목표우화문제,저여실제류정조작불부;이다급PGQ계통우화잉채용전통적수학규화방법,대모형요구가각차의뢰우초치적선취。위차,논문제출료일개면향류정안진다목표근종적우화방법。수선대다급PGQ계통진행료결구우화,연후장NSGA-II용우다급PGQ계통중개체PGQ적다목표우화구해,득도Pareto해집;재차기출상,장핍근이상해배서법(TOPSIS)화확전부리협폭치령민도분석법(EFAST)응용우개체PGQ적다목표결책,병종Pareto해집선취최우해재다급PGQ계통중축급전체,실현류정계통적분해협조우화。방진실례험증료방법적가행성화유효성。
Process Goose Queue is a novel approach to the decomposition-coordination optimization of process systems. However, there are still several limitations in the previous PGQ method, such as considering individual PGQ’s optimization as single-objective optimization, which is not consistent with practical process operations; and using traditional mathematical programming methods to deal with multi-level PQGs optimization problems, which demand accurate process models and depend on the selection of initial values. In response, a novel optimization method for multi-objective tracking of PGQs is proposed in this paper. Firstly, the multi-level PGQ’s structure is facilitated. Secondly, NSGA-II methods are applied to solve the individual PGQ’s optimization and Pareto set is obtained. On the basis, TOPSIS and EFAST methods are employed in the individual PGQ’s multi-objective decision-making. And the optimal solution selected from the Pareto set is delivered to the next PGQ. A case study is carried out to demonstrate the feasibility and effectiveness of the proposed approaches.